Learning in neural networks:
VLSI implementation strategies

Tuan A. Duong, Silvio P. Eberhardt*, Taher Daud, and Anil Thakoor
Center for Space Microelectronics Technology
Jet Propulsion Laboratory, Cdifornia Institute of Technology
Pasadena, CA 91109
*Department of Engineering, Swarthmore College
Swarthmore, PA 19081

ABSTRACT:

Fully-parallel hardware neural network implementations may be applied to high-speed
recognition, classification, and mapping tasks in areas such as vision, or can be used as |low-cost
self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning
isrequired not only to satisfy application requirements, but also to overcome hardware-imposed
l[imitations such as reduced dynamic range of connections. A learning algorithm may be
implemented in hardware, in which case the application merely needs to provide training data (for
supervised learning), or the hardware implements only a feedforward operation, in which case
learning is under the control of a host computer that applies input patterns and updates connections
according to the error of the measured outputs (i.e. hard ware-in-the-Joop learning). The latter
method is useful if the network only needs to be trained once for an application, since it greatly
simplifies the hardware, but at the cost of greater learning time and the requirement for a host
computer.

Following areview of the emerging hardware implementation strategies for neural network
lcarning reported in the literature, this chapter details a new architecture and supervised learning
algorithm, cascade backpropagation (CBP). It combines powerful features from other agorithms
such as cascade correlation (CC) and error backpropagation (EBP), and is particularly suited to
problems of image/data classification and object discrimination. CBP is a constructive architecture
In which aneuron (processing unit) is sequentially added to the net, and gradient descent is used to
permanently fix the weights connected to that neuron, both input and output. Each ncw neuron has
connections to the inputs and each preceding neuron’s output; thus each added neuron implements
a hidden layer. The addition of each successive neuron provides the system with an opportunity to
further reduce mean-squared error. Because the average number of connections to a neuron is
small, learning is quite fast.

Currently, the system isimplemented using analog CMOS VLSI and hardware-in-the- loop
learning. To adapt the architecture for hardware with limited synaptic dynamic range, the maximum
Synaptic conductivity associated with later neurons is reduced, thus effectively reducing the
Synaptic quantized step size. Simulations and tests with analog CMOS VL.SI hardware suggest that
the system is capable of learning difficult problems (such as 6-input panty and image classification)
with synaptic quantizations as low as 5 bits, as opposed to the 8-16 bits required for EBP and CC
learning algorithms.

1. PROD TION
Modern genera-purpose computers alow simulation of almost any neural network

architecture and learning algorithm, and there is little doubt that such simulations in many cases
afford the easiest and most cost-effective approach for neural network applications. However,

there are major application areas that require or benefit f1 om custom neural hardware. Custom
hardware is necessary in cases where required throughput is greater than can be sustained on
available computers, due either to very large network size or the need for short (realtime) learning
or response intervals. At the other extreme, a ssmple network used in a mass-produced commodity
such as an automobile may only be cost-effective as a single-chip standalone neural system. In
between, one might envision many applications where inexpensive, self-contained “black box”
neural hardware perform tasks such as fault detection, actuator control, and adaptive home
environmental regulation, to name just a few.

The field of neura network hardware is still in its infancy. Perhaps the only well-
established neural hardware is the computer plug-in “accelerator board" that is capable of rapidly
calculating such common neura primitives as multiply-accumulate, while other computational tasks
are performed by the main processor. Despite the fact that dedicated neural chipsets have been on
the market for close to a decade[1,2], few custom neural systems have found their way into
commercial products[3,4]. In this chapter we review the most common technologies and
techniques for implementing custom neural systems, and give an example from our own work of
an analog neural system capable of learning. We also stress the point that many of the learning
algorithms that have been developed for computer-based simulations arc not directly compatible
with hardware, and so any hardware development effort must have as it's centerpiece the
development of a compatible learning algorithm.

The basic task of a neura network hardware (or hardware simulator) is independent of the
implementation technology, and can be divided into the following modes. 1) MAPPING a
specified neural architecture onto the hardware taking stock of the number of inputs and outputs,
etc.; 2) LEARNING: Calculation and programming of synaptic connections (and possible network
architecture) so that the network will perform desired mappings from input to output; and 3)

OPERATION: Upon application of a complete set of inputs, the hardware must provide the results
for the required input to output mapping.

Let us consider the computational load required by learning, evaluation, and operation. For
serial smulations, the following agorithm applies to many learning methodologies:
1. while (network hasn’'t reached desired performance level)

{

2. for (each training vector)

{
apply input vector

3. for(each layer)
{

4. for(each neuron in layer)

{

5. for(each synapse connecting to neuron)

{
multiply activation by synapse weight
accumulate result into neuron’s input

}

calculate neuron’s activation

}
read outputs

calculate error at output
perform weight updates

Note that the weight update sequence may require many more computations than the operation
pass(loops 3-5), depending on learning algorithm. Due to the nested nature of the loops,
computational load can increase dramatically with increased problem complexity (giving more
Loop 1 passes), increased network size (increasing Loop 3,4, and 5 passes), or complex learning
algorithm (increased computation in the inner loops). For example, a 2-2-1 network requiring, say,
100 passes to learn the exclusive-OR problem (2-bit parity) would require on the order of

(100 training passes) x(4 training patterns) x(2 passes) X(3 layers) x(2 neurons/layer)

X (2 synapses/neuron) = 9600 operations
where it is assumed that weight-update and operation passes have equivalent complexity (2
passes). Applying this simplistic model to 3-, 5- and 8-bit parity, assuming that the number of
hidden units is the same as the number of input layer units and the required number of training
passes increases to 500, 2000 and 10,000, we sce that the required number of operations are,
respectively, 216K, 9.6M, and 983M. It is obvious that larger applications would benefit
tremendous)] y if calculations could be carried out in a parallel fashion.

Nevertheless, the general-purpose computer simulation that carries out these calculations
one at a time is near-ideal in al respects save response time and, in some cases, cost. The
computer can be programmed to implement almost any architecture and any learning agorithm, and

signals are represented with high’ precision and dynamic range by floating-point variables. The
same is not true of custom hardware: networks are often limited in size, support only certain
classes of architecture, represent signals and weights with limited precision and (possibly) with
large noise components. Thus, the success of a hardware implementation depends critically upon a
judicious balance of the many tradeoffs, involved in selecting a hardware technology, designing
the circuits, fixing classes and sizes of architectures that will be supported, and crafting a
compatible learning algorithm.

While we focus in this chapter on the most popular implementation technologies, namely,
complementary metal oxide semiconductor (CMOS) analog and digital, with signals that are
continuous-valued (or quantized to many levels), we should mention several other technologies
that have been reported in literature for neural hardware implementations. Optical[5], thin film[6-
9], and charge-coupled device [10, 11] technologies have all been used to implement neural
networks, but require rather elaborate or specialized fabrication processes. A technology that uses
standard CMOS, and that more closely models biological neural "wetware" functions, is pulse-
mode circuits. Pulse-mode networks represent signals by the duty cycle or firing rate of pulse
trains [12- 15]. Weights, however, are generally stored using analog or digital memories. A
primary advantage of pulse-mode circuits lies in their space-efficient processing circuits, which
combine analog circuit characteristics such as few transistors per processing element and fully-
parallel implementations with small-sized transistors. A possible advantage- and the primary
disadvantage- of this approach is that dynamic range is traded off with time. Otherwise, pulse-
mode circuits tend to exhibit the same difficulties as analog networks [16]. Several smaller-scale
pulse-mode networks have been built and furnished with alearning algorithm [13,15].

In the following sections, we hope to give the reader an appreciation of the characteristics
of the more dominant technologies employed for neural implementations, including strengths and
weaknesses that dictate the form of the implementations. Since our discussion of learning requires
addressing details of hardware implementations, hardware is treated first. 1ssues having to do with
learning, and in particular the incompatibility of many learning algorithms with limited-precision
hardware, arc then discussed. We present in detail a new learning agorithm, CBP, that is
compatible with hardware implementations, and give results from learning experiments conducted
with CBP. In addition, wc describe a further refinement in the learning algorithm and give
simulation results to show that the method is particularly useful for reduced weight resolution, and
therefore, suitable for analog hardware implementations. ‘

2. HARDWARE OVERVIEW

One key characteristic that distinguishes different implementations is the level of
parallelism. A neural net program running on a personal computer or workstation has no
parallelism beyond engaging integer and floating-point processor units simultancously. At any
point in time, the general-purpose processor is calculating one synaptic weighting, the activation
function of one neuron, or one connection-update. Many custom digital implementations (and also
software implementations executing on a parallel computer system) follow this model in a semi-
parallel way: each processing element calculates a subset of the network’s connections and neuron
activations. Throughput is increased by sharing the task over multiple processors. Further gains
may be achieved by designing specialized custom processors optimized for the neural tasks
required. However, there is often a tradeoff between speed of execution, network size, and
generality, so that the more specialized processors are usually faster, but support only a limited
number of architectures and learning agorithms.

The highest level of parallelism is achieved by implementing each synapse and each neuron
as a distinct circuit. While fully-parallel digital networks are rare in digital implementations, due to
the silicon-hogging nature of digital weighting, aggregation, and activation-function lookup
circuits, full-parallelism is the rule in analog and other non-digital implementations, in part because
multiplexing is more expensive, noise-prone, and difficult in the analog domain. Also, custom
circuits that store weights, perform weighting, and implement neurons tend to be significantly
smaller when implemented as analog rather than digital circuits, because the physics of
semiconductor circuits can be exploited to obtain neura functionalities in a highly space- and
power-efficient manner [17, 18].

Because both analog and digital technologies have their own particular inherent advantages,
neither has yet come to dominate. The state-of-the-art of hardware implementations can be
abstracted from Table 1, which presents an overview of many of the hardware implementations
that have been prototype to date. For each design, the table includes, if available in the literature,
specifications such as architecture size, speed, and learning algorithm supported. Most of the
features listed in the table will be discussed in the following sections[19].

Table 1. A comprehensive survey and compilation of the hardware implementations of
neural networks reported in literature[1 9].

3. DIGITAL IMPLEMENTATIONS

Digital circuits, because of their high noise immunity and the resulting capacity to transfer
information perfectly intact, are well-suited to time-multiplexing. Partially-parallel systems, with a
handful of custom synapse and neuron circuits can be constructed, allowing a flexibility that is
difficult to achieve in analog technology: a given neuron circuit or synapsc multiplier can calculate
one, ten or even thousands of neurons or connections within one pass with parallel processing.
Thus, as long as sufficient memory for weight storage is available, amost any size neural
architecture may be mapped onto a fixed nhumber of processors. Bandwidth, often measured in
millions of connections per second (MCPS) for data p1ocessing operation, and millions of
connection updates per second (MCUS) for learning, remains relatively constant for such acircuit.
Thus, the operation throughput, the reciprocal of the time lag between application of an input and
availability of the output, is also inversely related to the complexity of the architecture that is
mapped onto such a time-multiplexed system.

Most digital designs are indeed multiplexed, for the simple reason that a fully-parallel
digital system isimpractical for all but small architectures, since each connection in the network
generally requires silicon-hogging multiplier and adder circuits. Also, it would be wasteful to
incorporate into each neuron circuit an activation-function lookup table, when the speed of the
system is limited not by the lookup time, but by the multiply-accumulate synaptic weighting and
aggregation calculations. However, a moderately-large fully-paralel digital system, described
below, has been constructed using eight 5-inch silicon wafers[20].

Another advantage isthat digital circuits arc scalable --- as fabrication technologies (which
are often geared towards digital requirements) improve, circuits can be made ever smaller, alowing
more processors on a chip, while simultaneously decreasing execution time. Analog circuitry may
not scale down to the same degree, because noise may increase as feature size is reduced. For
example, transistor edge effects may become more pronounced as transistors are made smaller,
resulting in larger voltage offsets. Also, electromagnetic pickup from adjacent wires may increase
as wires are deposited closer to each other, and larger temperature variations may occur as current
densities and fluctuations increase. As noise levels increase, it can be expected that noise-intolerant
learning algorithms will fail, and that noise-tolerant algorithms will take longer to learn. However,
the analog vs digital trade-off will still be decided based on type of application, requirement of
precision, power consumption, processing time, and silicon real estate.

Recent innovations in digital design and fabrication technologies have already been applied
to neural networks, making possible several of the larger-scale designs in Table 1. Wafer-scale
integration (WSI) has been used to implement a single integrated circuit on a 5-inch diameter
wafer, implementing 576 time-multiplexed neuron circuits with associated synapses, using 40
million transistors [21]. The wafer was mapped with a fully-connected network implementing,
without learning, the 16-city traveling salesman problem. A solution was obtained after only 0.1
S., giving a throughput of 1.2 GCPS (gigs connections per second). An even more ambitious
implementation involved a battery of eight 5-inch wafers as a WSI neural network with 1000
neurons [20]. EBP learning was incorporated into the hardware, giving a maximum weight-update
rate (with al neurons used) of 2 GCUPS. The system was initially used for signature verification
and stock price prediction, and it was found that the har dware learned 1-3 times as fast as a
simulation running on a Hitachi S-820 supercomputer. While these two designs illustrate how
rapidly new digital technologies can be adapted to neural networks, note that WSI systems would
be quite expensive, even if mass produced .

4. ANALOG IMPLEMENTATIONS

Given the “messy” analog electronic circuit milieu of time-invariant offset voltages and
currents, induced and generated noise, drift, and temperature dependence, it is rather remarkable
that analog networks can be made to function at all! However, biological “wetware” is at least as
noisy a medium, and certainly nature has found a way to overcome the noise effects sufficiently
that neural systems can exhibit highly discriminatory behavior. Carver Mead has argued that the
physical characteristics of (subthreshold) analog circuits model closely those of biological neural
tissue [18]. This suggests that once we know the learning algorithms employed by biological
neural systems, wc may be able to directly apply these to analog hardware. Moreover, even with
current analog hardware it appears that collection of noisy and imprecise neurons and synapses can
behave with much higher accuracy than can the individual components[22]. Thus, the challengeis
to find the architectures and algorithms that best learn a task, while reducing the effects of the
underlying circuit nonidealities. However, investigators arc also attempting to “clean up” analog
circuits by reducing noise components, in one case by automatically canceling offset voltages [23].

Most analog neural implementations developed so far show marked similarities (Fig. 1).
Inputs, coded as voltages to take advantage of a wire's ability to distribute voltage, are routed to
one multiplier circuit for each synaptic connection. Each multiplier derives the other input from a
memory cell in which is stored that synapse’s weight. Multiplier output signals, representing the
weight inputs for the next layer of neurons, are coded as currents to take advantage of a wire's

ability to aggregate currents. Finally, neuron circuits apply a nonlinear activation function to the
aggregated weighted inputs, and supply a voltage. output that can be routed to the next layer of
multipliers, or used as system output.

From this description, it can be inferred that a primary advantage of analog implementations
is that the aggregation operation is essentially performed by the interconnect wiring, whereas in
digital implementations, each synapse output must be aggregated to the appropriate neuron input
net using one adder time-slot. Another advantage of many analog implementations is that the
dynamic range of analog circuitry is limited by the noise characteristics, not the number of bits, as
in digital circuits. Thus, whereas a semicustom digital network may be limited to fixed 8-bit weight
resolution by the designers, analog networks may reach 10 bits of resolution, with stochastic
(noise) effects that may additionally serve to mitigate some of the problems associated with hard-
quantized networks and learning. For example, in cases where a neuron is clipped during learning,
adigital weight-update signal to the synapses feeding that neuron may always be zero, whereas an
analog update signal with noise may succeed in dislodging the neuron, thus bringing the network
out of alocal minimum.

Several primary differences beyond mere circuit detail serve to distinguish
implementations, and have maor effects on system performance and capabilities. First and
foremost is network architecture. The architecture can either be fixed, in which case only subsets
of that particular hardwired architecture may be mapped onto the chip, or programming circuitry
can be added to allow some flexibility in routing synapses to neurons and perhaps controlling the
number of layersin the net. Because such programming circuitry can take up a significant part of a
chip’ssilicon real estate, the total number of usable synapses and neurons pcr unit silicon area will
be correspondingly lower. The most general architecture is the fully-connected recurrent network,
in which each neuron’s output is routed through synapses to each neuron’s input. By setting all
feedback synapses to zero, any feedforward network can be mapped onto this architecture. While
the network is very general, at least half the synapses are unused in a feedforward network, and
likely many more, since it appears that many sSynapses are unnecessary even in feedforward
networks [24].

A paradigm that has proven popular is the building-block approach [25] , where several
chips can be interconnected in different ways to obtain a good measure of architectural flexibility.
For example, synapse arrays can be implemented on independent chips, or each chip could
implement onc layer of a feedforward network. Large networks could be constructed by tying

many chips together. Disadvantages of this approach are the added chip and interchip wiring costs,
and the throughput penalties resulting from the capacitances associated with chip pins.

A second difference lies in the method used to store connection weights. Currently, three
mechanisms are being exploited: digital memory with analog converter, capacitive charge retention,
and floating gate. While digital weight storage does not have the drift problems of the other
methods and allows fast downloading from compuiter, it is space-intensive. since a digital-to-analog
converter (DAC) must be furnished on-chip for each weight, and resolution is limited to about 6
bits [24,26]. Storing weights as charge on capacitors [27] is relatively space-efficient, but requires
that leaked-off charge be periodically replaced, either by interspersing learning cycles with
feedforward passes [28,29], or by storing weights digitally and sequential y refreshing the charge
using one or more off-chip DACS [30]. Finally, floating-gate memories [1,31] store charge with
non-volatility using electrically erasable programmable read only memory (EEPROM) technolog y.
The charge can be non-destructively and continuously monitored by special transistor structures.
Charges are added or removed by quantum-mechanical tunneling, a process that is slow and may
reguire voltages that over time damage the storage device. Nevertheless, floating-gate memories
hold much promise for single-chip standalone neural networks with on-chip learning, particularly
where fast lcarning is not required.

Finally, the last major factor distinguishing analog learning implementations is support for
learning. On-chip learning support ranges from none, as is the case with feedforward hardware
networks where learning is executed solely by computer, to sophisticated stand-alone systems
where the learning portions of the chip may far exceed in size the feedforward execution portions.
This topic will be pursued extensively in a later section.

Let us consider in greater depth a typical analog implementation. The majority of analog
designs to date have used the charge-storage mechanism for weight memories, with a sample-and-
hold gate controlled by select logic, as shown in Figure 2. External address lines are decoded to
allow random access of a synapse. This closes the sample-and-hold for that synapse, and allows
the voltage from external computer-controlled digital-to-analog converters (DAC) to be applied to a
capacitor that stores the weight. (Thus, strictly speaking, the weights are actually stored in the
computer’s memory in high-resolution binary form, and the capacitors just serve as a temporary
store.) The alternate capacitive memory meehanism, which is employed by networks that must
periodically learn in order to refresh weights, employs circuits that add or extract a quantum of
charge from the capacitor [32]. In either case, the weights are applied to a multiplier circuit that
continually performs the weighting function. Unfortunately, multiplier circuits require a number of

sizable transistors if linearity, uniformity between circuits, and a large dynamic range are desired,
limiting synaptic circuit density to the order of 103-104 synapses per cm2. Since number of
synapses is the limiting factor determining the size of most fully-parallel networks, the usc of
simpler nonlinear multipliers has been proposed, along with a learning scheme tolerant of the
nonlinearities [33]. Fairly linear response has also been obtained using simpler weighting circuits
[34]. Synaptic outputs, coded as currents, are simply and highly efficiently aggregated by the
wires that connect them to their corresponding neuron input. Analog semiconductor physics can
also bestow an advantage in the neuron circuit --- asigmoidal activation function can be efficiently
implemented by little more than a differentia transistor pair.

Let us highlight just two of the significant number of analog implementations that have
been developed. (Additional citations are given in the section on learning, below). One AT&T
neural system is particularly interesting because it is an analog-digital hybrid that is being used for
character recognition [35]. With a recognition rate of onc hand written character every millisecond,
the system was faster by two orders of magnitude than a (serial) digital signal processor (DSP)
optimized for neural calculations. A 20x20 pixel image was applied to 4 network layers mapped
onto an analog chip that implements 130,000 connections, and a final 5th layer was implemented
serially on a DSP using an additional 3000 connections. 1.earning was performed off-line by a
workstation, and weights were downloaded to the system’s memories. The analog network used
the capacitor-charge method for buffering weights. Weights were quantized to 6 bits, and neuron
activations were represented with only 3 bits, including sign, The relatively few quantization levels
necessitated a final learning step where the weights in the final layer were retrained on-line. The
recognition error rate was 5.3%, as compared to rates of 4.9% and 2.5% for full dynamic-range
simulations and human subjects, respectively.

Onc of the earlier commercialy-available products was the Intel’s electrically trainable
analog neural network (ETANN) chip, released in 1990 [36). Each ETANN 80170W chip
comprises 64 neurons and 10240 floating-gate synapses onto which can be mapped recurrent or
multi-layer fecdforward networks. The chip must be plugged into a socket on a development
system for learning, using onc of the many supported learning algorithms. While learning is slow
duc to the floating-gate technology, ETANN has nevertheless heralded the age of program-rarely,
moderately-sized, standalone analog neural network chips.

10

4.1 JPL Hardware Approach

At the Jet Propulsion Laboratory, we have developed a variety of “building-block” chips,
some of which use digital weight storage, and some of which use capacitor storage [26,30].
Learning has been demonstrated with both these designs [24,37]. In this chapter, we highlight one
of the chipsets, which incorporate hybrid multiplying digital-analog convertor (MDAC) synapses,
on which we have implemented learning. Each synapse (Fig. 3) consists of a 7-bit digital memory
that can be randomly accessed by a host computer, a 6-bit digital-to-analog converter using scaled
current mirrors, a circuit to convert the input voltage to a current in order to drive the converter’s
current mirror network, and a programmabl e current-steering network such that the synapse can be
programmed to be cxcitatofy or inhibitory. Each synapse circuit is 200x200pum in a2pum CMOS
fabrication process.

The neuron circuit is slightly more complex (Fig. 4). To avoid a speed penalty resulting
from having to charge and discharge large summing-node capacitances (especially if the.se nodes
are routed between chips), the potential of each current-summing “net” node is held constant by the
corresponding neuron circuit. Thisis achieved by the neuron’s input stage: a differential transistor
pair Q19-Q20 amplifies the deviation of the summing node from ground (i.e. half the 10V power
supply potential), and causes the generation of a current that opposes the sum current, forcing the
potential of the sum node to remain at ground. This compensating current is mirrored, inverted,
and applied to an output transimpedance node. The transimpedance, and thus the neuron’s
sigmoidal slope (i.e. gain), can be controlled over a wide range by a programmable current mirror
circuit (Q 14). Programmable neuron gain is useful for normalizing the neuron’s response for the
number of input synapse connections [30,38]. This design resulted in a wide range, variable gain
neuron.

These circuits were combined on two chips with two types of architectures. One type
implements a 32x32 crossbar network of 1024 synapses; the other is similar except that the main
diagonal consists of neuron circuits. These two types of chips can be cascaded and programmed to
form larger, fully -connected, partialy-connected, or feedforward layered networks. A variety of
network architectures (with standard synapse and neuron characteristics) can be constructed with
this chipset. To map a feedforward network onto a chipset that is wired to be fully-connected, all
synapses leading to a previous layer are simply nulled. Respective synapses on two chips can even
be paralleled together to increase the number of synaptic quantization steps[38]; the outputs of the
two synapses are wired in parallel, and the synapses on the chip with the most-significant bits are
provided with 64 times the transconductance of the respective synapses with less significant bits.

11

4.1 JPL Hardware Approach

At the Jet Propulsion Laboratory, we have developed a variety of “building-block” chips,
some of which use digital weight storage, and some of which use capacitor storage [26,30].
Learning has been demonstrated with both these designs [24,37]. In this chapter, we highlight one
of the chipsets, which incorporate hybrid multiplying digital-analog convertor (MDAC) synapses,
on which we have implemented learning . Each synapse (Fig. 3) consists of a 7-bit digital memory
that can be randomly accessed by a host computer, a 6-bit digital-to-analog converter using scaled
current mirrors, a circuit to convert the input voltage to a current in order to drive the converter’s
current mirror network, and a programmable cur-rent-stem-kg network such that the synapse can be

programmed to be excitatofy or inhibitory. Each synapse circuit is 200x200um in a2um CMOS
fabrication process.

The neuron circuit is slightly more complex (Fig. 4). To avoid a speed penalty resulting
from having to charge and discharge large summing-node capacitances (especialy if these nodes
are routed between chips), the potential of each current-summing “net” node is held constant by the
corresponding neuron circuit. Thisis achieved by the neuron’s input stage: a differential transistor
pair Q19-Q20 amplifies the deviation of the summing node from ground (i.e. half the 10V power
supply potential), and causes the generation of a current that opposes the sum current, forcing the
potential of the sum node to remain at ground. This compensating current is mirrored, inverted,
and applied to an output transimpedance node, The transimpedance, and thus the neuron’s
sigmoidal slope (i.e. gain), can be controlled over a wide range by a programmable current mirror
circuit (Q) 4). Programmable neuron gain is useful for normalizing the neuron’s response for the
number of input synapse connections [30,38]. This design resulted in a wide range, variable gain
neuron.

These circuits were combined on two chips with two types of architectures. One type
implements a 32x32 crossbar network of 1024 synapses, the other is similar except that the main
diagonal consists of neuron circuits. These two types of chips can be cascaded and programmed to
form larger, fully-connected, partially-connected, or feedforward layered networks. A variety of
network architectures (with standard synapse and neuron characteristics) can be constructed with
this chipset. To map a feedforward network onto a chipset that is wired to be fully-connected, all
synapses leading to a previous layer are simply nulled. Respective synapses on two chips can even
be paralleled together to increase the number of synaptic quantization steps{38]; the outputs of the
two synapses are wired in parallel, and the synapses on the chip with the most-significant bits are
provided with 64 times the transconductance of the respective synapses with less significant bits.

11

Sign bits are programmed together. While the response of such stacked synapses may not increase
monotonically with binary weight count, it is advantageous with some learning schemes to have
the additional levels of weight quantization,

4.2 ATechnology Of The Future: 3-D Die Sggggﬁmg

JPL is currently evaluating an approach that may allow the construction of very large
analog or analog/digital neural systems. Noting that size of the VLS| networks is often limited by
available silicon area (where area, in turn, is constrained by increasing cost and decreasing
reliability as die size increases), the possibility exists that functioning silicon dies can be
interconnected by stacking to form compact, three-dimensional structures. A cube, constructed
from scores of thinned dies, occupies approximately the. same footprint as a standard die. In
addition to the tremendous processing power afforded by such a dense integrated circuit (IC) cube,
hybridization of a 3-D IC stack to an image sensor array would enable spatialy parallel signal
processing to be performed on image data at extremely high data rates. As shown in Figure 5, an
architecture has been conceptualized which combines the spatially parallel 3-D imager cube with
neural network processing for the first time, promising tremendous speed and network size
enhancements over conventional 2-D VLS techniques[39]. While the feasibility such stacking
technologies has been demonstrated [40], many challenges must be faced in developing such a
cube, including heat control, the development of software tools that can follow connections in the
third dimension, and, of course, the development of an appropriate neural-based architecture.

A particularly challenging application that requires the tremendous processing capability
afforded by such a 3D neural image processing cube is missile defense, which specifies spatial-
temporal recognition of both point and resolved targets at extremely high speed (milliseconds). A
reconfigurable neural network architecture, properly trained, may discriminate targets from clutter
or classify targets once resolved. By mating a 64 x 64 image sensor to a stack of 64 neural net ICS
so that each row in the imager array is attached to one IC, each with a different set of weights, a
variety of image processing tasks could be performed in parallel at extremely high speeds and in an
extremely small package. Neural network inputs could be controlled by a sequencer circuit that
controls signal flow along 64 common bus lines. A novel sequencer circuit comprises a switching
matrix that allows a small window (e.g. 8 x 8) from the imager to be input to any IC in the stack.

In order to limit power dissipation to about 2 watts for the entire 1C stack, the synapse and

neuron circuits described above were redesigned to support lower operating currents and power
supply rails, and a concomitant four-fold speed increase. 1* he expected computation rate for a 64-

12

die stack incorporating these synapses and neurons would be 10!2 connections per second, and
could be increased to 1018 CPS when a 1024x1024 focal-plane array imager becomes available and
as the 3-D stacking technology matures further. The synapse circuit is similar to the earlier version,
except that it utilizes single transistor current mirrors rather than the cascode current mirrors of the
previous design. The neuron circuit, shown in Fig. 6, consists of a very simple variable gain
transconductance operational amplifier without compensation capacitor. Neuron gain is varied by
adjusting the amplifier bias current. Figure 7 shows the two-quadrant synapse output
characteristics of the hardware as a function of stored weights with the voltage V;, as a parameter.
The combined synapse-neuron characteristics are shown in Figure 8 as a family of sigmoidal
curves with different slopes obtained by variation of the gain voltage. These circuits were modeled
with aPSPICE circuit simulation tool and experimental results correlate closely with simulation.
Simulation results indicate an average power consumption of less than 30 milliwatts/chip (or less
than 2W for a 64-chip stack) at the 4 MHz operation rate.

5. LEARNING IN HARDWARE SYSTEMS

A general-purpose computer can be programmed to execute any reasonably-sized
architecture and any conceivable learning algorithm. The dynamic range of weights and signals
traversing the ssimulated network, coded with floating-point variables, is sufficiently large that
quantization effects very rarely affect learning or operation. Unfortunately, the opposite is true of
most analog or digital hardware implementations. signals and/or weights must be implemented with
limited quantized levels of resolution and dynamic range. Studies suggest that for most learning
algorithms a reduced dynamic range will adversely affect (or even inhibit) learning. For operation,
however, reducing the dynamic range of weights and signals to a few bits often does not greatly
affect theresult [17,41]. A direct implementation of the ever-popular EBP algorithm, for example,
requires 12-16 bits of weight quantization [42]. However, maor modifications of EBP may
function reliably for at least some problems with as few as & bits of weight precision [43].

Learning with analog hardware poses a second challenge: how to structure a learning
algorithm to be less sensitive to the noise sources inherent in analog circuits Such sources can be
dynamic, with wide-ranging frequency components (including low-frequency drifts), or time-
invariant, as in the fixed offset signals generated within every analog circuit. Furthermore, noise
sources are not necessarily uncorrelated: noise in power busses may affect circuit outputs in
diverse ways. As mentioned above, noise can in some cases assist learning by introducing a
stochastic component to weight updates. However, offsets can be a mgor problem, as can
correlated noise sources.

13

Thus, a primary challenge that faces the hardware designer is finding a hardware-
compatible learning algorithm. We will focus here on a few leading examples of supervised
learning algorithms that appear to be most promising for hardware learning{44]. For the many
applications that do not require fast learning (including situations where the weights are fixed for
the life of the network), learning may be under the control of a computer. Digital networks of
modest size can often be faithfully simulated using floating point variables, and the resulting
weights can be quantized and mapped onto the hardware. Such an approach may not work for
analog networks unless offsets and other noise sources are measured and incorporated into the
simulation. Instead, a smple but time-intensive gradient-descent method that has been employed is
hardware-in-the-loop learning (HILL) [28,45-47]. HILL systems use a computer to set the analog
input values to the hardware, measure the outputs, and reprogram weights. A training token is
applied to the network, and the output is compared to the target vector. Each neuron output or
weight is in turn perturbed, and the effect of the weight perturbation on the output error is
calculated. The weight is then modified slightly so as to decrease the error. Obvioudly, thisis a
highly inefficient learning method, even if several simultaneous weight updates can be made at
once. Nevertheless, the advantage of this scheme isthat all time-invariant noise and other nonideal
hardware behavior is taken into account, including even altogether malfunctioning circuits.

Other investigators have included circuits for learning on-chip. A computer may still be
necessary to apply training vectors, but learning can usual 1y proceed much more rapid] y due to
higher weight-update parallelism, and faster learning cycles. While many investigators have
designed and even partially implemented anal og networks with on-chip learning, using supervised
learning algorithms such as EBP[29,48-52] and other gradient-descent techniques [53], or
unsupervised learning algorithms such as Oja's rule [54] and Kohonen networks [55-57],
relatively few functional analog on-chip learning systems (beyond limited prototypes) have been
reported. Pioneering experiments with small networks capable of lcarning were pursued starting in
the 50's by Widrow [58], using his madaline learning mechanisms. Alspector has successfully
executed several designs, using (stochastic) Boltzmann Laming [59]. His more recent stochastic
system used controlled noise sources in the form of digital circuits that generated random
bitstreams with low correlation [60,61], rather than the uncontrolled sources inherent in the analog
circuitry. Finally, a more specialized analog implementation used Grossberg self-organized
learning [62]. Digital on-chip learning networks have also been implemented, generally with EBP
learning variants [3,19,63]. Onc noteworthy neural chip with a measured time for a feedforward
pass of only 104 ns used a variant of restricted-Coulomb energy (RCE) learning [64].

14

6. E ARCH ‘

Most learning agorithms operate on a fixed architecture that has been predetermined, often
using little more than guesswork. The problem is that the network size required for a given
problem is dependent on the complexity of the input data set and the structure of the patterns to be
extracted. These factors are generally unknown. If the selected architecture is larger than required
for a particular problem, learning may take longer than necessary, and if the selected architectureis
too small, the network will not adequately learn the task at hand. To avoid the necessity of fixing a
network architecture, and to obtain higher efficiency in learning, a new class of learning
architecture has been proposed in which a network evolves out of a si mplc two-layer precursor
architecture. Hidden units are added as necessary until the network performs adequately.

The first such architecture appears to be Scott Fahlman's CC |learning scheme [65]. The
precursor network has no hidden units, and weights are adjusted using the gradient descent (or one
of its variants). Then, in each subsequent operation, a new single-neuron layer is added, with the
neuron’s inputs connecting to the network inputs as well as all hidden-unit neuron outputs.
Initially, a new neuron’s output is not connected, and the input weights arc set so as to maximize
the covariance between the new neuron’s output and the residual error of the network output.
These input weights arc not altered after this. Finally, all output-layer weights are retrained using
the delta rule. In this way, each new neuron serves as a feature detector that is likely to reduce the
output error, and which can be used by subsequent neurons for more sophisticated features. A
final advantage is that the rate of decrease of error with each new hidden-unit addition can serve to
indicate the utility of adding further units.

Such an architecture has a number of attractive features for usc with hardware
implementations. Besides the advantages deriving, from a1 chitectural efficiency, such as efficient
network size and use of a small network for at least part of the training task, each of the two steps
of the learning algorithm requires updating relatively few synapses. Furthermore, an error signal
does not need to be propagated back across multiple layers - a process that is highly noise-prone in
analog implementations.

A study of the sensitivity of CC learning to reduced dynamic range variables and weights
has shown that while the algorithm is relatively insensitive to representing neuron activation by
even as few as 5 bits of precision, weights must be represented with a much greater dynamic range
[41]. The 6-bit parity was one among various problems studied in simulation, where the limited
weight precision led first to an increase in network size, then catastrophic failure below about 12

15

bits as weight updates were mostly truncated to zero. Modifications of the algorithm that included
probabilistic weight update resulted in successful learning, with as few as 7 bits [41]. However,
these modifications would be expensive to implement in hardware.

6.1 Cascade -Backpropagation (CBP) Learning Architecture

In this section we develop a new self-evolving architecture that is highly efficient with
respect to hardware implementations, and demonstrate its ability to learn with reduced synaptic
weight dynamic-range. This new learning architecture is termed CBP and it is shown in Figure 9.
In comparison with EBP, CBP was designed with a clear motivation to avoid the arbitrary and
predetermined assignment of hidden units, and thus avoid identical subspaces in weight-space that
may cause convergence problems{66]. In addition, its most important feature is the capability to
reduce the weight resolution requirement of EBP, which is particularly costly to implement in
hardware [42]. Further, the theory of self-evolving architecture shows that each added hidden unit
potentially reduces the energy level, which continuously moves the network towards minimum
energy level [67].

CBP uses the stochastic gradient descent technique and the self-evolving architecture [65].
The process of adding a new hidden unit is based on a number of fixed iterations. Learning is
required for the synaptic weights that are related to the new hidden unit and the output bias weights
only. However, in this study, we have not optimized the number of iterations that may he required
to learn the input-output relationship for the particular problem.

6.2 Mathematical Model

We first define some variables as follows:
p is the” variable for the number of training patterns, where p={1,..P};
o isthe variable for the output components with o={ 1,...0};
X. is the bias input which is kept fixed at 1;
x;istheinput signal with j={ 1..Ni);
xn(!) is the output from hidden unit with I ={ Ni+1...Ni+n }. Here, Ni represents the input
dimension, O the output dimension, and n is the number of” added hidden units (or the expanded
input space). The energy function can, therefore, be written as:

16

Let T be the target matrix, with a column for each input target pattern, given by:

nod.tf
- .
1 tf;...tz
and, the corresponding actual output matrix is:
YiYie
y = .
Yo Yo--Yo
Then, with no hidden units in the network, one can calculate the output as.

Y = F(WX))

and let W;, be the set of weights between input and output matrices. The best estimation weight set
of the given energy function (1) in affine space is calculated as:

W, = F'0x* (3)
with X"as the pseudo inverse of X[68], and F-! as an inverse transformation matrix given by:

ey ey ... fle)
F\T)=

flao) £ L.)
The set of weights Wi, is then kept frozen. Assume that n hidden units arc added, and the output
is calculated as follow:

Yo = flnet,) (4)

where,

17

Ni+n Ni

net, = z x,(Ow,, Z “Jwij. s
1=Ni+1 =

and f is the transfer function of the output neuron (termed f,,). Further,

x, (1) =f(net, (1))

(5)
where, f isthe transfer function of the current hidden neuron (termed fh and is equal to fo),
Ni+l-1 Ni
net,(l) = =%+v}'h(k‘)wﬁ1 + j=0xjwj1
and,
1 ifi=0
x; ={ x; ifi <Ni+1
x,(I) ifi2Ni+1
Let us define:
' df(net, (1))
() =228 7
T dnet,(l) ’ and,
. _ dfnet,)
fo) net
With m as the learning rate, the stochastic gradient-descent gives the weight update as:
P
Aw, = n9E (6)

i

where, i and j denote the starting node i and the destination node j. And, applying the chain rule to
Eqn. (6) for the weights between the hidden and the output neurons, and the bias synapses
connected to the output, we get:

OE" _ OE’" Oy, Onet,
ow; Oy} Onet, ow;

18

which can be written as, (we are only interested in the new hidden unit),

35" = =25 -) oxh(n) (7)

i

Using Eqgn (7), we can rewrite Egn (6) explicitly with afirst order and a second order term[69] as:

Aw,, (k) =nph@mXe, - ob)f - aAw,, (k-1) 8)
with <o <1

which gives the weight updates for the synaptic components between the currently added hidden
unit n and the output o as shown in Figure 10. Similarly, the updates for the weights between the
inputs (including expanded inputs and the bias weight at the currently added hidden unit) and the
current hidden unit are given by:

JE’ =8net§,'af,,(net§,’) o onett Oy JE*
ow;; ow; onet, <0 df,(net’)onet’ dy"

which then can be written as,

p o .
35 =- Zx{’f:(n)o% W,f 5 (0 — yP)

Yy

This equation is similarly written in an explicit form with a first order and a second order term as.

B,) =TI D o YNE + b~ 1) ©

with0 <o <1

for the weight components. The change in learning rate after addition of each new hidden unit is
given by:

c
Nnew - Nota = 4 o —iterations (lo)

with n,,, as the current learning rate, N, as the previous learning rate, and ¢ as a constant. When
o is zero, we obtain the first order gradient descent and if o isanonzero constant, then the two

19

terms in both the Eqgns (8) and (9) contribute to the weight updates and the second order gradient-
descent is obtained.

6.3 Quantization of Weight Space

Because of the limited quantization weight space, the value AW ; of the weight update will
have to be modified to AW™*;; to fit with the available quantization. The closeness between them
will depend on the weight resolution available. Let nbit be the bit resolution of the weight space.
Then the maximum level of weight space will be MAXLEVEL =2bit) -1, We define stepsize(n)
to be a step size for the weight space of ahidden unit n. The stepsize(n) can be generated from a
constant stepsize(0) which is fixed before starting the learning process. The stepsize(n) is obtained
as follows:

E,.
stepsize(n) = stepsize (0) 7 ! (12)
0

with Eg as the energy of the network without any hidden units or the bias input added (includes
only the input to output weights calculated using pseudo-inverse technique), i.e.,

P
Eo = X E (WoX"Y")
p=

and the energy En-1is the energy of the network with n-1 hidden units added. There arc two ways
to obtain the number of stepsfor AW;;: oneis the round-off technique where the number of steps

are caculated as follows,

W..
*— + 0.5) if AW, >0

_ (mt)(stepsize(n)
#stepi = AW (12)
. ij__ _ N .
(m')(stepsize o 0.5) if AW; <0
and the other is the truncation technique for the calculation of the number of steps as below:
AW,
#stepi = (int)(—————:) (13)

stepsize n)

20

Before updating the candidate weight using AW*,;, one must ensure that the final quantized
weight will not exceeded the limit provided as MAXLEVEL.. Therefore, first the previously stored
weight is converted to an equivalent number of steps, which is given by:

. W,
#stepa = (mt)(s fepsize (n_)) (14)

Then,

0 if @stepi + #steps) > MAXLEVEL

AW, = . .
v stepsize (n)(#stepi) otherwise

(15)

6.4 Procedure for Learning in Hardware

A clear procedure for the learning algorithm, used for solution of a 6-bit parity problem, as
an illustrative example, is presented below.

Based on the mathematical analysis of the EBP learning algorithm [69], the weight update
(consisting of the first and second order terms) can be performed by incorporating (i) either the
first order term only; or (ii) the summation of the two terms to obtain the second order effect as
well. The idea of this development effort, of course, is to make the algorithm implementable in
hardware given the limited synaptic weight resolution.

When considering the transfer characteristics of a neuron, a mathematical equivalent of
sigmoid such as alogistic function is considered or a look-up table is constructed. A look-up table
requites step updates and hence a quantization of the values. It has been shown that such a neuron
‘quantization iS not as sensitive as synaptic equalization [41,42] for the convergence properties of
the circuit. In addition, the density of synapse on a chip is much higher than that of neurons.
Thus, it is important to keep the synapse quantization as low as possible, commensurate with
proper learning. Therefore, in our study, the effect of neuron quantization has not been
considered. On the other hand, synaptic weight quantization is known to affect the sensitivity of
learning to a larger extent, and the synaptic weights in hard ware maybe limited in their resolution
any where from 5 to 10 bits.

21

6 .5 Weight Update Issues:

The weight update Aw;; is obtained as an analog number. However, the weight space is
discrete in a hardware based on hybrid digital-analog synapse designs as is the case with our
MDAC approach described earlier in Sec. 4.1. Therefore, to update the weight, the value Aw;;
must be converted into the number of steps by which the weight is to be updated before it is
summed into the weight component. The conversion from an analog level to the respective discrete
level results in some |osses due to quantization.

In A/D conversion technique, typically, there are two conversion schemes: (1) Round-off;
and (2) Truncation. In our simulation, we have compared these two schemes for their
effectivenessin learning. We find that the round-off scheme works better in terms of convergence,
especialy when only the first order term in the weight update is considered. During learning
phase, one must also consider the constraint of discrete levels limited by the available weight
resolution. For example, with an 8-bit synapse, the number of discrete levels should not exceed
255.

Some of the salient features of our new learning algorithm arc:

1. The step size is dynamically changed after addition of each hidden unit. The change is
based on the level of energy left over in the previous hidden unit (as aratio of the original
level of energy). In general, with the addition of a new hidden unit and subsequent training
of the respective weights, the energy of the network decreases, resulting in smaller step
size for the next stage of added hidden unit. However, in the present simulation for the 6-
bit parity problem, the maximum number of hidden units added was limited to twenty
irrespective of whether each additional hidden unit decreased the energy or not, or whether
the network converged to the right solution.

2. The input to a neuron can be adjusted using two variables beside the input to the synapse
itself. One is the weight value which can be updated during training, and the other is the
biasitself to the synapse. It is this latter feature that allows for easy adjustment of the step
size and, more importantly, promotes convergence with lower quantization of synaptic
weights. Furthermore, this new design will provide independent, programmable, bias
voltages to rows of synapses connected to each hidden unit.

22

THE 6 BIT PARITY PROBLEM

To assess the effectiveness of our methodology, and for easy comparison with other work

reported in literature, we selected to study the 6-bit parity problem using our new CBP learning
algorithm. The 6-bit parity problem has 64 discrete patterns to be classified. The neural network
architecture has 6 inputs and one bias line directly connected to one output line through seven
programmable weights. The procedure used for training is as follows:

© ©o N o

Calculate the six weight values for the input-output connection weights using the pseudo-
inverse relationship. In this particular case, the sol ution of the pscudo-inverse calculation
is very close to zero. Therefore, we have arbitrarily set al the weights to 0.5. These
weights are then kept frozen throughout.

Provide the input patterns (with bias weights not connected) and evaluate the respective
output errors and calculate the energy E(0O). If the errors are within a given tolerance, then
the training is complete. If not, proceed further.

Set a learning rate, 1 =3.5 and o = 0.9 for second order effects and o = O for first order
effects respectively, and a weight step size given by:

stepsize(0) = 0.015*2@-~b@; where nbit = synaptic weight resolution in bits.

Add a new hidden unit along with randomly selected input and output weights, including
the bias weights. These weights have to be converted to quantized levels of weights where
each weight = stepsize(n) * (#steps.) Further, #stepa should be an integer given by either
round-off or truncation method.

Again provide the inputs, measure the output, and evaluate the new error values for all the
input patterns to ascertain if training is complete. Otherwise, continue the training process.
1 =M -3.5/10000, and stepsize(n) is given by equation (11).

Apply a random input pattern to the network.

Calculate the change in weights AW;; using equations (8) and (9).

Calculate the number of steps required, #stepi using equations(12) and (1 3).

The total number of steps, #step(total) = #stepa + #stepi. If #step(total) > MAXLEVEL
then set AW, * (= #stepi * stepsize(n)) to 0. Otherwise, update Wj;and #stepa..

This procedure will update all the weights for the added hidden neurons and the output bias

weights.

11.

Go to 7, until the required application of number of iterations of the random patterns are
completed. The number of iterations can be decided depending upon the requirement of the

problem and the time available. In our case, we used 6000 iterations as an outer loop, and
64 iterations as an inner loop for each pattern.

12. Calculate the error for al the patterns and evaluate for completion of training. If complete,
stop training, otherwise, calculate the energy E(n) and go to 4.

13 If the number of added hidden units is greater than 20, give up and quit.

7.1 Cascade Backpropagation (CBP) Simulations

Using the above procedure, simulations for hardware were performed and the mean error and the
standard deviation of the error were obtained for the four cases, two with only the first order term,
with both round-off and truncation methods of conversion, and similarly the other two with the
second order term included. As expected, the simulation showed that including the second order
term made the errors go down considerably compared to that with just the first order term. As a
result, thisled to an acceptable solution with reduced synaptic weight resolutions. The mean error
and the standard deviation curves for these four cases as an average of 10 runs are shown in
Figures 10(a-d) and 11 (a-d) respectively. Overal, the method showed tremendous tolerance to
reduced weight resolution and that with second order term included, the hardware with = 7-bit
resolution performed as good as that with full floating point accuracy with about 12 neurons added
as hidden units. In addition, with the second order term included, the results with 6- and 7-bit
resolution had closc to 100% correctness, and even 5-bit resolution weights provided 80 to 90%
correctness. Table 2 summarizes these results of weight quantization and the correctness of the
solution in the four cases (out of 64 patterns).

Table 2. Percent of correct CBP learning runs for the 6-bit parity problem with variation
of synaptic weight resolution, using first order and second order terms in learning
algorithm, with round-off (RO) and truncation (Tr) modes of weight value conversion)

Percent correct, Percent correct, Percent correct, Percent correct,
First order (RO) First order (Tr) Second 0.(RO) Second o(Tr)

5-bit weight Q 40% 10% 90% 80%
6-bit weight Q 90% 80% 100% 90%
7-bit weight Q 00% 80% 90% 100%
8-bit weight Q 00% 00% 100% 100%
9-bit weight Q 00% 00% 100% 1 00%
Floating point 00% 00% 100% 100%

24

8. HARDWARE IMPLEMENTATION WITH |I. EARNING

A neura network hardware system was assembled using the. analog neuron and synapse "building-
block” chips described in Section 4.1, a computer interface, and CBP learning algorithm (Figure
12). The hardware consisted of eight building-block chips: two synapse-neuron hybrid chips gave
a maximum of 64 neurons, two synapse-only chips completed this fully-parallel 64x64
architecture’ s first seven bits of synaptic precision. The last four synapse chips paralleled the first

set of synapses in this network to allow larger d ynamic range in the weights (13 bits). A schematic
diagram showing the chip arrangement is given in Figure 13. The system was connected to a
personal computer, with parallel ports to access the digital weights, and analog converters to
program inputs and read outputs. An early version of the CBP algorithm was used, with first-
order learning dynamics and truncation of weights. The learning algorithm used all13 bits of
precision (with the sign bits of each paralleled synapse pair tied together). Although the 13 bits
thus obtained did not necessarily increase monotonically, the stochastic nature of the analog
hardware evidently served to bridge nonmonotonicities sufficiently that learning could proceed.
The measured input-output characteristics of one synapse-neuron pair is shown in Figure 14.

Two applications were tested, parity and a computation-intensive feature classification
problem. The 2-bit parity problem was taught to the network by adding hidden units until the
outputs were correct, exceeding a threshold of 3/5 full-range for a true and measuring below 2/5
for a false. This substantial noise margin at the output made it unlikely that noise levels would
cause a false reading. After each hidden unit was added, 3000 backpropagation trials were
executed, and network function was tested for correctness. A scatter plot of (binary) output as a
function of (analog) inputs showed a marked bias towards “true” outputs overall, athough the
output was correct for the binary input representations (-Viax, +Vmax) [24]. In most cases, 2-4
neurons were required as hidden units for all outputs to reach the criterion threshold levels.

The classification task, map separates, involves processing color map data (similar to
roadmaps)- sampled at 24 bits per pixel- in order to determine the primary colors at each pixel.
Representing maps with 24 bits per pixel is grossly wasteful, since a map is printed with only
about eight colors, and thus, each pixel could be represented fully either by an 8-bit vector (if more
than one color can be associated with a pixel) or a 3-bit color identifier (if each pixel is to be
classified as only one color). Not only can storage requirements of maps can thus be reduced, but
automatic and manual operations applied to the map would be greatly simplified if individual colors
(such as black and red, mostly representing roads) could be independently extracted for display or

25

processing. This task is more difficult than it may appear, since large variations in hue and
intensity exist between maps, and even over one map. Furthermore, noise in the form of small dots
may need to be filtered. Thus, a network must take as input a window of pixels centered about the
particular pixel currently being processed. This application is well-suited to a fully-parallel neural
networks due to the massive number of maps (currently stored on videodisk and CD-ROM
memory) and the large number of pixels that need to be processed per map|70].

To map this problem into our hardware, a 3x3 window with 3 analog color intensities (i.e.
red, green, and blue) pcr pixel was applied to the 27 inputs of the network, once for each pixel in
our 305x200 map segment. The system was trained on a subset of the pixels that had been
classified by hand, using a precursor of the CBP algorithm in which first-order truncation
dynamics were used for weight mappings and error backpropagation, and all weights were
adjusted at each step (rather than freezing all but the output layer). To validate the results, the error
was compared with alternative classification methods, as shown in Table 3. Figure 15 shows the
original map data and the neural net hardware output after completion of hardware-in-the-loop
training. The hardware performed as well as the alternate classification algorithms running in
software.

Table 3. A comparison of the accuracy of various data classification methods for the
given map-data classification problem.

Classifier Method Accuracy
Neural Network Simulation 91.2%
Neural Network Hardware 89.3%
K-nearest Neighbors 91.9%
Baysian-Unimodal Gaussian 89.8%

The primary limitation to processing speed in this application was the conversion between
analog and digital domains at network input and output. Analog-to-digital conversion has
frequently been the primary limiting factor in throughput, although one can expect that low-cost,
high-speed video converters with sufficient dynamic range will soon become available.

9. CONCLUSIONS

26

Custom neural network hardware is appropriate, and in many cases required, for certain
applications. When the application requires realtime response that exceeds the capability of high-
end workstations, or when a mass-produced system that is not computer-based requires nontrivial
data processing, custom neural hardware may be highly cost-effective. Furthermore, there are
particular applications such as biological neural subsystem emulation [18], associative memory
[71], and pattern matching [35] which beg a neural solution. But many general tasks can also be
carried out by neural systems. Indeed, we look forward to the day when easy-to-use neural
hardware “black boxes’, each appropriate for certain classes and sizes of architecture, are available
in much the same way that software objects capable of executing common (but perhaps specialized)
tasks arc coming into usc today.

Both analog and digital implementations have their place in today’ s neural milieu. Digital
designs allow a greater flexibility in mapping arbitrary or extremely large problems onto a limited
number of time-multiplexed processing circuits, and no analog conversion is needed if inputs and
outputs are already in binary representations. Also, advances in fabrication technologies may
benefit digital implementations more so than analog. Analog circuits can be much smaller in size
than digital, making it feasible to implement a fully paralel system of moderate size on one chip or
achipset. Taking advantage of physics, the circuits that aggregate signals at neuron inputs, which
are space-consuming in digital technologies, can be implemented essentially as wires in analog
technology. Also, while circuit noise may be considered by some to be the bane of analog
implementations, many learning algorithms benefit from a noise component that can shake the
weight configuration out of local minima. New techniques for obtaining larger silicon real-estate
show promise for constructing very large networks. Wafer-scale neural networks have already
been successfully constructed. It is only a matter of time until chip-stacking, which can be used to
efficiently implement 3-D topologies, is used for neural networks.

Control of the network is usually relegated to a general purpose computer. This alows
generality at a high level - the particular training set, learning algorithm, compensation for network
flaws (such as malfunctioning output units), and the architecture that is mapped onto the resources
available in the custom hardware can all be fine-tuned by the user. However, the greater the
required lecarning and operation throughput, the costlier this processing overhead becomes (a
phenomenon reminiscent of Amdahl's Law in computer engineering [72]). Thus, the highest
throughput can only be obtained by directly interfacing the hardware to the external inputs and
outputs, and implementing feedforward pass (and learning, if learning speed is critical) into a
custom hardware, at the cost of generality. This unfortunate tradeoff of generality versus
throughput may be somewhat ameliorated by implementing programmable datapaths and multiple

27

learning algorithms in digital irnplementations (at a significant space penalty), or by using chipsets
that allow a user wired-in flexibility over architecture in analog implementations.

The current state of custom neural hardware technology allows single-chip systems to be
fabricated that have dozens of neurons and up to tens of thousands of synapses. A few specialized
wafer-scale systems have exceeded these numbers by an order of magnitude. While such systems
have been used to demonstrate a variety of interesting applications, only a handful of such
networks have been commercialized for specific applications. Much application-development work
has yet to be done before a niche for custom hardware can be carved out, It is likely that a good
deal of thiswork must center on learning.

Learning agorithms are perhaps the “missing link” in the development of custom hardware
implementations. While much effort has gone into the analysis and development of learning
algorithms for computer-based neural simulations, relatively little work bass been directed toward
developing or adapting learning algorithms to be compatible with the limited precision (and analog-
system noise) inherent in hardware. Almost certainly, more work is needed in this direction before
custom neural hardware can become mainstream. 1t can be anticipated that the learning algorithms
used by biological systems will soon be more fully teased out, and that these algorithms will be
profitably applied to hardware, especialy to analog circuits.

Most learning algorithms in use today require a user to select the network architecture
before learning commences. L ooking towards the goal of semi-autonomous “ black-box” networks,
agorithms that automatically configure the network until a criterion level of performance is reached
would be highly advantageous for hardware implementations. Two feed-forward learning
algorithms that add hidden-unit layers automatically are CC and our CBP method. We devel oped
CBP to ssimplify the hardware required for on-chip learning, and to allow learning with as few bits
of synaptic precision as possible. We have shown that CBP can work reliably with as few as five
bits of weight precision. To achieve this, a method for associating dynamic weight-update steps
was developed that may be applied to any cascade learning algorithm as long as each layer can
learn independently of the others.

Acknowledgments
The research described herein was performed by the Center for Space Microelectronics
Technology, Jet Propulsion Laboratory, California Institute of Technology and was jointly

sponsored by the Ballistic Missile Defense Organization/Innovative Science and Technology Office

28

(BMDOV/IST), the Office of Naval Research (ONR), the Advanced Research Projects Agency
(ARPA), and the National Aeronautics and Space Administration (NASA). The authors thank Drs.
A. Stubberud, S. Kemeny, and R. Tawel, and S. Gulati for useful discussions. Authors aso
acknowledge M. Tran and H. Langenbacher for technical assistance.

29

References:

[1] M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically Trainable Artificial Neural
network (ETANN) with 10240 “floating gate” synapses,” Proc. IEEE 1IJCNN, vol. |, June 18-
22, 1989, Washington, DC, pp. 191-196.

[2] Y. Arima, et a. “A Refreshable Analog VLS| Neural Network Chip with 400 Neurons and
40K Synapses,” |EEE Journal of Solid-State Circuits, Vol. 27, NO. 12, pp. 1868-1875, Deg,
1992.

[3] D. Hammerstrom, “A Massively Parallel Architecture for Cost-Effective Neural Network
Pattern Recognition, Image processing, and Signal processing Applications’. Digest of Papersin
GOMAC Conference, pp. 281-284, 1992, Las Vegas, Nevada.

[4 C.Grove“Ni 1000 Recognition Accelerator chipM" Netstor, Inc. One Rchmond Square,
Providence, RI 02906.

(5] N.H. Farhat, “Optoelectronic neural networks and learning machines,” |EEE Circuits and
Devices Msg., Sept. 1989, pp 32-41.

[6] T. Daud, A. Moopenn, J. Lamb, A. Thakoor, and S. Khanna, "Feedforward, high
density, programmable read only neural network breed memory system,” SPIE/ High Speed
Computing, Ed: D.P.Cassasent, Vol. 880, 11-12 Jan., 1988, Los Angeles, CA, pp 76-84.

[7] A.P. Thakoor, A. Moopenn, J. Lambe, and S.K. Khanna, “Electronic hardware
implementations of neural networks,” Applied Optics, Vol. 26,5085-5092, 1987.

(8] R. Ramesham, T. Daud, A. Moopenn, A.P. Thakoor, and S.K. Khanna, “Manganese
oxide microswitch for electronic memory based on neural networks,” J. Vat. Sci. Technol. B 7
(3), 450-454, 1989.

[9] S. Thakoor, A. Moopenn, T. Daud, and A.P. Thakoor, “Solid state thin film memistor for
electronic neura networks,” J. Appl. Phys. 67, 3132, 1990.

[10] A.J. Agranat, C.F. Neugebauer, R. B. Nelson, and A. Yariv, " The CCD Neural Processor:
A Neura Network Integrated Circuit with 65536 Programmable Analog synapses,” |EEE Trans.
Circuits Sys. Vol. 37, NO. 8,pp. 1073-1075, Aug. 1990.

[11] A. M. Chiang and J. R. LaFranchise “Rea-time CCD-Based Neural Network Systems for
Pattern Recognition Applications,” Digest of Papersin GOMAC Conference, pp. 285-288, 1992,
Las Vegas, Nevada.

[12] A.F. Murray, “Pulse arithmetic in VLSI neural networks,” Micro Magazine, p 64-74, Dec.
1989.

[13] J. E. Tomberg and K.K.K. Kaski, “Pulse-density modulation technique in VLSI
implementations of neural network algorithms,” IEEE J. of Solid-State Circuits, vol 25, no. 5, Ott
1990, pp 1277-1286.

[14] S. Churcher, et al. “Generic Analog Neural Computation-The EPSILON Chip,” In:
Advances in Neural Information Processing Systems, Vol. 5, pp. 773-780, Morgan Kaufman,
San Mateo, CA, 1993.

[15] R. Sarpeshkar, et al. “Visual Motion Computation in Analog VLS| using Pulses,” In:
Advances in Neural Information Processing Systems, Vol. 5, pp. 781-788, Morgan Kaufman,

San Mateo, CA,1993.

[16] Hamilton, A., A.F. Murray, D.J. Baxter, S. Churcher, H.M. Reekie and L. Tarassenko,
“Integrated Pulse Stream Neural Networks: Results, Issues and Pointers,” |IEEE Trans. Neural
Networks, 3(3); 385-393 (1992).

[17] Hopfield, J.J, “The effectiveness of analogue ‘neural network’ hardware,” Network 1; 27-
40 (1990) (IOP Publ. Ltd., U.K.).

[18] C. Mead, Analog VLSI and Neural Systems_, Addison-Wesley, Reading, MA, 1989,

[19] S. Schoenung, B. S. Papadales, and T. A. Tibbetts, Data compiled by W.J. Schafer
Associates in conjunction with a study jointly funded by JP1. and BMDO.

31

[20] Yasunaga, M., N. Masuda, M. Yagyu, M. Asai, K. Shibata, M. Qoyama, M. Yamada, T.
Sakaguchi and M. Hashimoto, “A Self-Leaming Digital Neural Network Using Wafer-Scale LSI,"
|EEE J. Solid-Sate Circuits 28(2); 106-114 (1993).

[21] Masaki, M., Y. Hirai and M. Yarnada, “Neural Networks in CMOS: a Case Study,” |[EEE
Circuits and Devices Mug. 6(4); 13-17 (1990).

[22] R.C. Frye, E.A. Rietman, and C.C. Wong, “Back-propagation learningand nonidealities in
analog neural network hardware,” IEEE Trans. on Neural Networks, Vol 2; NO. 1, pp 110-117,
Jan, 1991.

[23] Carley, L. R., “Trimming Analog Circuits Using Floating-Gate Analog MOS Memory,”
|EEE J. Solid-Sate Circuits 24(6); 1569-1575 (1989).

[24] T. A. Duong, S. P. Eberhardt, M. D. Tran, , T. Daud, and A. P. Thakoor, “Learning and
Optimization with Cascaded VLSl Neural network Building-Block Chips,” Proc.IEEE/INNS
International Join Conference on Neural Networks, June 7-11,1992, Baltimore, MD, vol. I, pp.
184-189.

[25] S.P. Eberhardt, T.A.Duong, and A.P. Thakoor, “Design of paralel hardware neural
network systems from custom analog VLS| “building-block” chips,” JEEE/INNS Proc.IJCNN,
June 18-22, 1989 Washington D. C., val. I, pp. 183.

[26] A.P.Moopenn, T.A. Duong, and A.P. Thakoor, “Digital-Analog Hybrid Synapse Chips
for Electronic Neural Nteworks," Adv. in Inf. Proc. Sys. 2, Ed: D.S. Touretzky, Morgan
Kaufmann, 1990, pp. 769-776.

[27] F. Kub, L Mack, K. Moon, C. Yao, and J. Modolo, "Programmable analog synapses for
microel ectronic neural networks using a hybrid digital-analog approach”, poster presented at |EEE
Int'l Conf. Neural Networks, San Diego, July 24-27, 1986.

[28] M. Jabri and B. Flower “Weight Perturbation: An Optimal Architecture and learning

Technique for Analog VLS| Feedforward and recurrent Multilayer Networks,” IEEE Trans. on
Neural Networks, Vol 3, NO. 1, pp 154-157, Jan, 1992.

32

[29] T.A. Duong, “On-chip learning in VLSl hardware”, NASA Technology Briefs, (to be
published).

[30] S.P. Ebcrhardt, T.A. Duong, and A.P. Thakoor, “A VLSI synapse “building-block” chip
for hardware neural network implementations,” Proc. Third Annual Parallel Processing
Symposium, Mar. 1989, Fullerton, CA, vol. I, pp. 257-267, IEEE Orange County Computer
Society.

[31] Benson, R.G. and D.A. Kerns, “UV-Activated Conductance Allow For Multiple Time
Scale Learning,” |EEE Trans. Neural Networks 4(3); 434-440 (1993).

[32] Madani, K., P. Garda, E. Belhaire and F. Devos, “Two Analog Counters for Neura
Network Implementation," JEEE J. So/id-Sate Circuits 26(7); 966-974 (1991).

[33] Ghosh J., P. Lacour and S. Jackson, “OTA-based Neural Network Architectures with On-
Chip Tuning of Synapses,” IEEE Trans. Circuits and Syst. - || Analog and Digital Sign. Proc.
41(1); 50-57 (1994).

[34] Lee, B.W. and B.J. Sheu, “General-Purpose Neural Chips with Electrically Programmable
Synapses and Gain-Adjustable neurons,” 1EEE J. Solid-State Circuits 27(9); 1299-1302(1992).

[35] B.E.Boser, E. Sackinger, J. Bromley, Y. LeCun, and L.D. Jackel, “An Analog Neural
Network Processor with Programmable Topology,” |EEE Journal of Solid Sate Circuits, vol. 26,
NO. 12, Dec. 1991.

[36] 80170NW Electrically Trainable Neural Network Specification Sheet, USA/E358/0590/2k/
GF/CC, Intel Corp. (1990).

[37] S.P.Eberhardt, T.A. Duong, R. Tawel, F.J. Pineda, and A.P. Thakoor, “A robotic
inverse kinematics problem implemented on neural network hardwarc with gradient-descent
learning,” Proc. of the 2nd. ISTED International Symposium on Expert Systems and neural
Networks, Hawaii, Aug. 15-17, 1990, Ed: M.H.Hamza, pp. 70-73

[38] T. A. Duong, T. X. Brown, M. D. Tran, S. P. Ebcrhardt, T. Daud, and A. P. Thakoor,
“Cascaded VL SI Neural network Building-Block chips for Map Classification,” Digest of Papers,

33

Goverment Microcircuit Applications Conference, Las Vegas, NV, Nov. 10-12, 1992, pp. 145-
146.

[38] T. A. Duong et. al,"Low Power Analog Neurosynapse Chips for a 3-D "Sugarcube”
Neuroprocessor," Proc. of IEEE Intl’ Conf. on Neural Networks(ICNN/WCCI), Vol 111, pp.
1907-1911, June 28-July 2, 1994, Orlando, Florida

[40] Shanken, S. N., “3-D processor packaging and interconnect,” Proceedings of the
Government Microcircuits Applications Conference, Vol. XVII, pp 151-154, 1991.

[41] M. Hochfeld and S. Fahlman, “Learning, with limited numerical precision using the
cascade-correlation algorithm ,* IEEE Trans. Neural Networks, vol.3, No. 4, pp 602-611, July
1992.

[42] P. W. Hollis, J.S. Harper, and J.J. Paulos, “The effects of Precision Constraints in a
Backpropagation learning Network,” Neural Computation, vol. 2, pp. 363-373, 1990.

[43] S. Sakaue, T. Kohda, H. Yamamoto, S. Maruno, and Y. Shimeki, “Reduction of required
precision bits for back propagation applied to pattern recognition,” IEEE Trans. Neural Networks,
Vol. 4, No. 2, pp270-275, March 1993.

[44] R. Tawel, “Learning in analog neural network hardware,” Computers Elect. Engng, Vol.
19, No. 6, pp 453-467, 1993.

[45] S. P. Eberhardt, R. Tawel, T. X. Brown, T. Daud, and A. P. Thakoor, “Analog VLS|
Neural Networks: Implementation Issues and Examples in Optimization and Supervised Learning,”
IEEE Trans. Indust. Electron. vol. 39, no. 6,pp. 552-564, Dec. 1992.

[46] Andes, D., B. Widrow, M. Lehr and E. Wan, “MRIIl: A Robust Algorithm for Training
Analog Neural Networks,” Proc. Int'l Joint Neural Networks Conf., Vol. 1, Washington, D.C,
Jan 15-19; 533-536 (1990).

[47] T. Duong, T. Daud, and A. Thakoor, “ Cascaded VLS| Neural Network Architecture for
On-line Learning,” NASA Tech Brief , vol. 17, NO 12, Dee, 1993.

34

[48] B. Furman and A. Abidi, “A CMOS backward error propagation LSl1," Proc.22nd
Asilomar Conf. on Sgnal, Systems, and Computers, Pacific Grove, CA, Nov, 1988.

[49] Eberhardt, S.P., Analog Hardware for Delta-Backpropagation Neural Networks,” U.S.
Patent 5,101,361 (1992).

[50] Morie, T. and Y. Amermiya, “An All-Analog Expandable Neural Network 1L.SI with On-
Chip Backpropagation Learning,” IEEE J. Solid-Sate Circuits 29(9); 1086-1093 (1 994).

[51] Lent, J.B. and W. Guggenbuchl, “Analog CMOS Implementation of a Multilayer
Perception with Nonlinear Synapses,” |EEE Trans. Neural Networks 3(3); 457-465 (1992).

[52] Shims, T., T. Kimura, Y. Kamatani, T. Itakura, Y. Fujita and T. lida, "Neuro Chips with
On-Chip Back-Propagation and/or Hebbian Learning,” IEEE J. So/id-Sate Circuits, 27(12); 1868-
1876 (1992).

[53] D. B. Kirk, et a. “Analog VLS| Implementation of Multi-dimensional Gradient Descent,”
In Advances in Neural Information Processing Systems, Vol. 5, pp. 789-796, Morgan Kaufman,
San Mateo, CA.

[54] Donald, J. and L. Akers, “An Adaptive Neural Processing Node,” IEEE Trans. Neural
Networks 4(3); 413-426 (1993).

[55] He, Y. and U. Cilingiroglu, “A Charge-Based On-Chip Adaptation Kohonen Neural
Network,” JEEE Trans. Neural Networks 4(3); 462-469 (1993).

[56] Heim, P., and E. A. Vittoz, “Precise Analog Synapse for Kohonen Feature Maps,” |EEE
J. Solid-Sate Circuits 29(8) ;982-985 (1994).

[57] Macq, D., M. Verleysen, P. Jespers and J.-D. Legat, “Analog Implementation of a
Kohonen Map with On-Chip Learning,” |EEE Trans. Neural Networks 4(3); 456-461 (1993).
[58] Widrow, B., “Generalization and Information Storage in Networks of Adeline ‘Neurons',”
in Self-Organizing Systems, M. Yovitz, G. Jacobi and G. Goldstein, eds. Washington D. C.:
Spartan Books, pp. 435-461 (1962).

35

[59] J. Alspector, JW. Gannett, S. Haber, M.B. Parker, and R. Chu, “A VLSI-efficient
technique for generating multiple uncorrelated noise sources and its application to stochastic neura
networks,” 1EEE Trans. on Circuits and systems, vol. 38, NO. 1, pp. 109- 123,Jan, 1991.

[60] J. R. Alspector, et al. “A parallel Gradient Descent Method for l.earning in analog VLS
Neural Networks,” In Advances in Neural Information Processing Systems, Vol. 5, pp. 836-844,
Morgan Kaufman, San Mateo, CA.

[61] A. Jayakumar and J. Alspector, “On-Chip Learning in Analog VLSl Using Simulated
Annealing,” Digest of Papers in GOMAC Conference, pp. 277-280, 1992, Las Vegas, Nevada.

[62][Fang, W.-C., B.J.Sheu, O. T.-C. Chen and J. Choi, “A VLS| Neura Processor for
Image Data Compression Using Self-Organizing Networks,” 1EEE Trans. Neural Networks 3(3);
506-518 (1992).

[63] Kirkpatrick, C.G., R.CKezer and G.A. Works, “Intelligent Gradient Descent 1C with On-
Chip Learning,” Digest of Papers in GOMAC Conference, pp. 273-276, 1992, Las Vegas,
Nevada.

[64] Uchimura, K., O. Saito and Y. Amemiya, “A High-Speed Digital Neural Network Chip
with Low-Power Chain-Reaction Architecture,” |EEE Trans. Solid-State Circuits 27(1 2); 1862-
1867 (1 992).

[65] S. E. Fahlmann, C. Lebiere, “The Cascade Correlation learning architecture,” in Advances
in Neural |nformation Processing Systems 11, Ed: D. Tourctzky, Morgan Kaufmann, San Mateo,
CA, 1990, pp. 524-532.

[66] Chen, A. M., and Hecht-Neilsen, R “On the geometry of fecdfordward neural network of
weight spaces.” In Proceeding of the 2nd of IEE Conference on Artificial Neural Networks, pp. 1-
4. 1EE Press, London.

[67] T.A.Duong, “An Analysis of cascade architecture in neural network learning,” Under
preparation.

[68] G. Strang, Linear Algebra and its applications » 379 €dition, Harcourt Brace Jovanovich,
Publishers, San Diego, 1988.

[69] D.B. Parker, “Optimal Algorithms for Adaptive Networks: Second order Back
Propagation, Sececond order Direct Propagation, and Second Order Hebbian Learning,” Proc.
IEEE First Intel’' Conf. Neural Networks, Vol. I, pp. 593-600, San Diego, CA, 1987.

[70] T.A.Duong, T. Brown, M. Tran, H. Langenbacher, and T. Daud, “Analog VLS| neural
network building block chips for hardware-in-the-loop learning,” Proc.IEEE/INNS Int'l Join
Conf. on Neural Networks, Bejing, China, Nov. 3-6, 1992.

[71] Verleysen, M., B. Sirletti, A. M. Vandemeulebroecke and P. G. A. Jespers, “Neural
Networks for High-Storage Content-Addressable Memory: VLS Circuit and Learning Algorithm,”
|EEE J. Solid-Sate Circuits 24(3); 562-569, 19809.

[72] Wawrzinek, J., K. Asanovic and N. Morgan, “ The design of a Neuro-Microprocessor,”
|EEE Trans. Neural Networks 4(3); 394-399 (1993).

Figure 1 A schematic block diagram showing the synapse (sguare blocks) and neuron
(triangles) functions and signal flow. For maximum generality, outputs could be connected on-
chip to inputs, and a fecdforward network could be mapped onto this architecture by nulling
synapses leading from any layer to the neurons in the same or earlier layer(s).

Figure 2 Block diagram of a capacitor refresh 32 x 32 synapse chip showing arrangement of
individual synapse cells with signal flow, and row and column decoders.

Figure 3 A circuit diagram of a 7-bit digital-analog hybrid synapse cell using scaled current
morrors to implement a monotonic programmable scaling circuit. The in.set shows schematicaly
the digital circuit for weight storage.

Figure4. Circuit diagram of a wide range variable gai n neuron with sigmoidal transfer
characteristics. The stages of voltage to current conversion, comparator, and gain controllers are
shown. Input potentia is kept constant to avoid capacitive charge delay, and the gain control stage
allows programming sigmoidal slope.

Figure 5 Conceptual diagram of a 3-dimensionally stacked multichip module integrated with
a2-D focal plane array. All the sensor array contacts are bump-bonded to the chip-stack under it.

37

Interconnections (including controls and power) at the neural net chips are brought out along the
edges to the connecting busbars.

Figure 6 Circuit diagram for a high speed and compact variable gain neuron cell. A
feedforward time of < 150 nanosecond per synapse-neuron pass is more than an order of
magnitude improvement over previous design with a 6-7 microseconds delay.

Figure 7 Synapse output current as a function of synaptic weights (263 levels) with different
input voltages, Vi (1.5, 1.9, 2.4, and 2.8 volts).

Figure 8 Synapse-neuron sigmoidal transfer curves giving neuron output voltage as a
function of synaptic weights (363 levels) with neuron gain as a parameter.

Figure 9 A schematic diagram of a cascade backprop architecture showing added hidden
units. Synaptic weights arc shown as small rectangles where the filled rectangles signify that they
are frozen after completion of training, before the next hidden unit is added.

Figure 10 Mean error as a function of added hidden units with synaptic weight resolution as a
parameter for the cascade backpropagation (CBP) learning simulation for hardware with (a) only
the first order weight update term and round-off (fob-) conversion; (b) first order term and
truncation (fo/t) conversion; (c) including second order term and round-off (so/r) conversion; and
(d) second order term and truncation (so/t) conversion methods.

Figure 11 Standard deviation as a function of added hidden units with synaptic weight
resolution as a parameter for the cascade backpropagation (CBP) learning simulation for hardware
with (a) only the first order weight update term and round-off (fo/r) conversion; (b) first order
term and truncation (fo/t) conversion; (c) including second order term and round-off (so/r)
conversion; and (d) second order term and truncation (so/t) conversion methods.

Figure 12 A photograph of an eight chip board with 64x64, 13-bit synaptic array and 64
neurons connected to a host computer and configured as a fecdforward net for solution of amap-
data classification problem with hardware-in-the-loop cascade backprop learning.

Figure 13 A schematic diagram showing 2 neuron-synapse and 6 synapse chips cascaded to
form a 64x64 reconfigurable neural network with nominally 13 bits of synaptic resolution.

Figure 14 Synapse-neuron sigmoidal transfer curves for the cascaded high resolution synapse
arrangement with £4096 levels

Figure 15 Map-data input (left) and feature classified output (right) for a 305x200-pixel map-
segment using the setup shown in Fig. 13. A training set of 2000 data-points was used, and the
neural network architecture consisted of 27 analog inputs for each 3x3-pixel window, each pixel
with 3 colors (RGB), each color with an 8-bit of resolution (256 levels). The output consisted of 7
different color outputs (< 3 bits) assigned to each central pixel of the 3x3 window representing as
many different features on the map. The hardware solution with 89.3% accuracy was nearly as
good as that obtained using other feature classification methods in software (Table 3).

Synapse Matrix, m x n

Neuron
Layer

3'12

}'m {>'V1’

>@® >@®.oo>@.®
JY } :
i /w? >@ @ e o o i w.@

®

Waight .

I2

Input Signals as Voltages

Figure 1

nNrep=z0—0 —-coev-co

WEIGHT

|1 2 £~ ROW
UPDATE our | ouy lour SELECT
VOLTAGE A 4 (DIGITAL)
I X2 1
ANALOG
SIGNALs | LSM SH co e SH -
v b4
N] x —9
* ° 32-32 N
° ™Y SYNAPSECELL o
® ® ARRAY ®
Row
L_gﬂ._—-’ ADDRESS
DECODER
~an ¢
| oo
S/H
soe g
Vin_] _
K
‘....
BIAS [¢— COLUMN
CURRENT COLUMN ADDRESS DECODER l¢— SELECT
GENERATOR ¢— (DIGITAL)
,‘_-

Figure 2

Momory Coil, 00,.. D&

vdd Load Data In

Current mirrors and

Vil common to Indlvidual synapse circults with digital weight storage
all the synapses through ON/OFF latches Do - D5, and +/- current direction
along arow In the | through latch .6 giving a 7-bit (6 + sign bit) resolution
matrix

Figure 3

Q21

'blas
Q16 1}
— AN J L
COMPARATOR -v GAIN
CONVERTER CONTROLLER

Figure 4

| BUS 1
4 BUS 2

BUS 64

CONTROL

A

IC STACK

Figure 5

VddI

J,Tf

—q[

CURRENT
NPUT
POLY-
RESISTOR
—e
GAIN
CONTROL
| | [
I L

Vss

—e

Figure 6

VOLTAGE

OUTPUT

2.5

1.5

0.5

Current Qutput (UAMP)
o

-2.5¢

-80

-20

0
Digital Weights

Figure 7

1

20

40

60

80

=2.7v

The neuron output vesus the digital weights with Vin

T

-40 -20 0 20 40 60 80
Digital Weights

-60

4.5

3.5

(32} wn

N
abeyjjoA Indinp

A

1.5

Figure 8

OUTPUT
Y

/50

net

net, () r (>3 L1,

net, (I-1) “ %, ~1) =

/"
/
i

N
%
fig]
|18

io

-
\:

- cCc U = -
3 >
]
_ R
L

Figure 9

L e e —— 40
1 - T ~
(@) meanstorr [o "Weight | F (b) mean/fo/t [Synaptic Weight |
35 b Resolution] a5 [Resolution]
[— = §-BIT] [F—o— 5.BIT |]
a0l —t+— 6-BIT |] [—+— 6-BIT |1
- —a— 7817 | 30 3 —a— 7-BIT |7
[—O— 8-BIT] O™ =8t]
225 F] 225 | —— 9-BIT |]
zZ L —%— 9-BIT | 1 <t s Eloat P
w !] s !]
=20fFl 0 I : 20 | '
@ .] &]
o] o)
- 1 c |
wis J wis f-
10 F Rk 10 F
5 [5 g
0 ! 3 0 [> DO - .
0 s 10 e . 0 5 10 15 20
HIDDEN UNITS
HIDDEN UNITS
o T 40 v T v T v L A—
[(c) mean/solr Synaptic weight | f (d) mean/so/t [“synaptic Weight
35 Resolution J 3B Resolution 7]
. : : g 10, 5‘B'T 9
[—w=— 5BIT |] g]
30 f —t+— 6-BIT |4 0 Fr S6ET | 2
1 ; [—A— 778Bm |]
g —&— 7-BIT |] -]
[h =25 L —O— 88T | A
25 | —O— 8-BIT |4 z25¢ h
z L,] b |y —¢— 99T | 3
5 f —x— 9-BIT | ; = \ rewene EFdoat Pi|
= 20 F s Eloat Pt _1 o 20 F
! g o ! h
& [] e []
o i o &J 9 “ :
o o o 15 - -
w 15 F] Y]
0 : " ga 7
] 5 F h
5 - d L
.] [4
. :] 00— S AY
: 5
0 5 10 15 20 10 15 20

HIDDEN UNITS

HIDDEN UNITS

Figure 1o

STANDARD DEVIATION OF ERROR

30

- n N
o (]

[$)]

-

“/ANDRD DEVIATION OF ERROR
o

'
a1

Y YTY YT vy

T ¥ oo r=r—r—r-r

(a) std/folr

Synaptic Weight
Resolution

o 5-BIT
—— 6-BIT
—&— 7-BIT
-0~ 8-BIT
—%— O-BIT
w==-e—-= [loat Pt

Ko e L —
(c) std/so/r Synaptic Weight | 1
Resolution]
25 5-BIT -1
—+— 6-BIT | -
—A— 7-BIT]
20 —O0— 8-BIT |]]
—x— 9.BIT |]
weseesepeee E|0 gt Pt o
15 f -1
10 + -
o L
5 F .
0 .
0 5 10 15 “270

15
HIDDEN UNITS

STANDARD DEVIATION OF ERROR

HIDDEN UNITS

STANDARD DEVIATION OF ER®OR

Figure 11

30

25

30

25

20

15

10

20

LN SN SN HENLAND BN SNM 1 NN G A g

(b) stdffolt

LANL SEN GRS Sun S aun

Synaptic Weight

Resolution]
—&— 5-BIT |
—+— 66T i
—&— 778AIT |]
——O— 8sE@IT

~—s— 99EBIT
e | OFdoat Pt

HIDDEN UNITS

AL AN SN SR M BNL SN BNL NN (RN SNM SN SN Amn G Sun amn aen am |

(d) std/so/t

Synaptic Weight
Resolution
5-BIT

~—+— 6-BIT
—&— 7-BIT
-O— 8-BIT
—— 9-BIT

Float Pt

A A2

sresncenggeeasee

PN U

5 10 15
HIDDEN UNITS

20

CASCADED VLSI 64X 64 13-BIT SYNAPTIC ARRAY AND 64 NEURONS NEURAL
SYSTEM: HARDWARE LEARNING FOR IMAGE RECOGNITION AND CLASSIFICATION

hi(!i (MM%""’W“@\

\(. B) t ':’"Tfiﬂt KB

Figure 12

N/S NEURON-SYNAPSE CHIP

S SYNAPSE CHIP

X, Y DIRECTIONS FOR LARGER SIZE
NETWORK

z DIRECTION FOR HIGHER
SYNAPSE RESOLUTION

—-[>— NEURON CELL

") SYNAPSE CELL

Figure 13

v1 ainbiyg

[S3UBIJIN3T INANT 149 3M

DDDO jjjm [atalolhl Fan el [at a¥e aietale
LUU I uuuU UlUo i Lol HEER Y ol Luu S
o
— -
-
/ N
IR
O\
N
i W ¢
”/ _
NN _
NN
NN
/ ///// - v
AN |
// ///// _
SN
— // // . /r/ |
N |
\ N AN N //
\ // /I/ // _
LSRN X |
- NS /// _ @
// NN //// / _
/I I/ . 1
\ . 1

L_

co

[sebpy [0A] INdIN0 NOMM3N

7" | Neural Network Outpat. {nn1242_7ce27in2. 83.29% Co

ynprocessed image

N e N

Figure 15

10/17/94

Section 1 of 5

TABLE 1

. .
f Neurally Inspir hi nd Boar
Electronic Neural Network Chips - Commercialty avsilable, under development, and/or imaginary
Company Relerence Chip Frst Technology Sponsor Masnber of | C e Clock | Number of | Number ofl Algorithene | Cireult] Partners Wecslaneous
Numbaer Siicon Source Traneistors sec Technology | Spesd | Meurons | Weights | Supporied | Type
| {cupe) (cpe)
Adapiive Soksions, Inc. NNZ2NN28 | 1) CNAPS Prototyps 1200 co::g Yentre 250E+08 1.80E+00 0.8y CMOS s B8P P Tugay)
(Beaverton, OR) hove oc. Funde Sharp,
i {ME Bed Weidersha
NN2S 2) CNAPS-1084 | baniqupt in 1901) 1.40E+07 100E+08 | 128400 0B CMOS | 20MMH2 [Lva2 | Dighe Used In sarver wih
! up 10 512 processors
{American Neurciogit 1)Prototyps 1002 | Samsung | Suspended newral work |
(Santord, FL) :
! 2) NLX-220 | Fuzzy proceseor
ATAT Bl Labs NN1T 1) ANNA { US Amy SDC| 180,000 1,00€410 09U CMOS | 20MHZ O 2,008 For OCH
NA ! AD
|Bex Communiceions NN inprogress
Bessarch Cop., e,
|(Morvetown, N
Bosing Detenss & Space 1) AVPS8-POC2 280E408 22CM08 | 10MHZ © 60 Fyord Taecadable
[(Sealle WA
CA Inefue of Technology [NNT? 1) Conlows-Lengh NSF, ONR, 2uCMO8 2304 Arwiog] Tarmer | Dynamic wire B, |
(P asadena, CA) and RISC Ressarch for vision draulry
NNT? 2) Rgure Ground 2 CMO8 Andlog msC
NNTO) DAPRANSF 2u CMO8 [EGD, K-W | Analog
CafToch & JH Univ. NNOO RIA-NSF, 2uCMO8 T Mead
P cA MOSIS HP nwel
Conter for Neural Engr. {NNOY 1) Analog VL.S! DARPA TRW, 2u CMOS 1024 E5] %2 BXKF | Andog| For
CA] & Samaung doudle polysl. Mz receiver spplicalions
|CISC - Univ. of Michigan | NNoS 1) 18 Channel CMOS NiM 7,100 WCMOS | 10MHz ' WOW power
{Ann Abor, MD | 1 metad'! poly l ! desipaion
| Computasonal NN Centar |NN14 1) Neuron chip] : oMos | 100, 10000 Anaog, ARy SO0
Lyngby, Denmark) |
| Echelon Corporation NN1S 1) MC143120] Wolorcla & | Extenal dala e !
(Palo Alto, CA) I Toshiba
NN18 2 MC143150 (?E"P m raomovy
Eocle PolytachvFed. Laus (NNSO 1) L-Newo 1.0 160,000 288E407 1.0 CMOS [980 ; BP, Kohan, Resi-tme robolcs
(Lsusarne, Switrerland) i Hebbian applications
Fuiwy NN3Y 1) 1008 50 | 4 Digtal
(Kowasald, Japan) |
NNTO 2 n roge 2uBLCMOS | Analog Dispersion problems
Genersl Dynamice NN2INN32 1) AXON ¢ 1900 i | 120400 |] T " Techndlogy venelened
(Pomona, CA) i | | | | ' | Yo E-matrica(Orario. CA) |
Hitach, L.) | N30 1) Prototyps R i i I \ 0.0 CMOS ! i B i 1,982 1 i '
 (Tokyo, Japen) : ; ; : : : ! . : ! ! ! | ' i
NN1TNN2T (2) 1024 Probolyps ‘hwugcu|(:wvd Ressarch, ' : ' tATEMOP : 0SuCMOS ' 30MHz! 1024 T00E.08 Digital wap:. i
Laborakory : : | | desipadon
Hughes Ressarch Lab NNT4 1) 30 Water ' 2.4E400 - 3D WSI ; Vielon rtegra¥on et |
i 2.04E+10 and beckprop nat
Hughee Tach. Center NN27 In progress| 1.00E407 EEPROM 300 100,000 NOST
CA {SanDiego)
MNC NN28 NNZS 1) SNAP 1902 USArmyl | 90000gatss | 825E408 | 8.00Es07 1.0u CMOS 4 BPICP, | Dighel
{San Disgo, CA) FL Morsmouth gals arrey SOM, 16 chip sets.
Lvez, (1.28E400 cpe)
NN28NNZS |2V 1992 DARPA | 110,000 pates | 1.00E+08 | 32E+08- 1.0u CMOS (7 ART PNN, | Digitat Two chip set
128400 ol arrey and others {ViP-1 and VIP-2)
el NN13INNZS, [1) ETANN (3017000 1989 Nevel Waspons 1.20E+00 2.00E+00 7] 10240 | ©P/ABP
(Sants Clara, CA) NNAONNS Cantst Madabne 1
NN2ONNZS | 2) NE100O %3 DARPAONR | 3.70E+08 1.00Es10 | OBUEEPROM | 25MHz| 1024 | 256E+06] RCE | Digtal| Neetor ATC spphcatone
NNB2
Irvine Seneors Com. NNTONNZS, | 1) 30ANN SDIO,ONR, 340€+10 SOMRz| 16384 Aoy Faman eye od |
(Coate Meea, CA NN43 ST BMDO brain emutator

10/17/04 Section 2 of 5

Seattie Office

Preliminary Survey of Neurallv Inspired Chips and Boards

!Flodronle Neural Network Chips - Commerciafty @ bnllabls, under development, and/or imaginery (continued) !

Company E Relerence Chip i Firet i Technology { Sponeor Number of | Con C] Semi Clock | Number of | Numbaer of| Algorithms | Cireult! Pariners Mscallensous
i Number ! Sifcon Sowrce | Transistors | Updeme/sec [1 Technoloay | Spsed | Newrons | Weights | Supporied | Typs
! e | ow | - 1
P INNOT NNB4 | 1) Palh Planner 800E409 | 2uCMOS 7MH2 600 | Digitel
(Pasadena, CA) i nwel !
NNOZNNO3 | 2) Neuron-Synapes S5.00E+08 2y CMOS -4 092 Cascede BP | Arwalog Currenty being
Bulding Blodk pawel ocommarcialized
NN4Y 3) Assst Manager 2uCMOS 1,800 Analog
&) Associative Memory 2 M08 Cascade BP | Hybrid Stores 128 pattere of
| dimension 18
King's College iNNo4 1) pRAM SERC 20,000 gatee 10 CMOS x8 Up 5 § chipe
{London, UK) l can be linked
Korea Telecom 1) URAN 200E+09 12y CMOS 14225 3508 Digital
{Seo, Korea)
Matsushits Bactic 1) GNC 27,000 0ste | 5OOE+c4 205€410 1.2u double 4738 | 200E408 | Weights are stored
(Oeaka, Japan} metal CMOS off chvip
(Melco-Mitmubiehi Bectric [NNOS 1)NNLS! Craukt LS! Laborstoriss S00E+04 0.8y CMOS 400 40,000 | Boltzmann | Analog
(Hyogo, Kk - | i
(Micro Computing Lab NN1S 1) OWES HNe 1950 280,000 ' 1.10E408 10 MHz .| Hopheld SFIT x4 chip set
(.ausarns, Switrartand) . i
1S 2) GENES HHS | 1000 | 800,000 | 1.00E+00 woMHz | 2¢ Hebbian | Dighe
Micro Devices NN3SNNSS | 1) MD 1220 1.00E407 s Digital Weights stored in
{(Lake Mary, AL) (Neural Bit Sics) axternal memory
MIT Lincoin Leboratory INN®Y 1) NNC2 1 1026400 | 2uCCDIOMOS | TOMHZ 080 Digital Tecn. based on
Lexington, MA | 1 dm-dpe | charge coupied device
Newel Semiconductor NNIBNNSS |1) CNUR232S 1992 26 MH2 2 | 1024 Digitat $500/chip
(irvine, CA) ‘ ! 100,000 pakternasec
Newral Tochnalogies, Lid. | NN41NNAS | 1) NISP ! | | | Smith |
| (P starsfield, England) i i [! | inchssiriea |
North Carcline University | NNT2ZNNS4 | 1) TIMANN B 4,000 1.96E408 24 MO8 15 MHz 1 Kohonen, | Digital
{Raleign, NO) pwel ‘ Markovian
NTT LS! Labersieries NNOO 1) PDN Modsl 15,500 gates B00E400 | OSUCMOS | 56MHz] 13 | 832 | Digtel Low-power chain-
(Kanagewa, Jepan) 582,400 Yane. ‘ | | reacton (LCR) arch,
Oxford Computer, ine. |NN&2 1) OBL Chio Submicron T uvesticted | |
(Oxdord, CN) CMOS
Ricch, L. NN23 1) AN-100 wo 400E407 | 8.00Es07 10 MHz 1 s
(Tokyo, Japan)
NN23 2) AN-200 e 200,000 gatss | 1.50E+09 3.00E409 08 CMOS | 12MHz 18 268 Oigital To be ussd
in pholocopler
Slemans, AG ‘NN21 1) MA-18 Prototype 1992 | Esok i 810,000 gawe | 400E+08 | 4.00E+08 10U CMOS | 25MHz 128 65536 | urvearictad | Digita $2K/chip I
Mdunich, Germary) | i i (demo) i i
!»m,m-s, 2) MA-18 ! I 510,000 | 8.00E.08 10UCMOS | BoMHz! 18s T 1as | digrat Signal preprocessing |
! |NN7 NS | | | | | | ! | | |
!Staniord University NN ' | ONASA ' 400,000 | 350E.0e 120 CMOS | 125 WMy 32 | 2048¢ , Bolzmenn Dighel, .
(Swntord, CA) - | ! : | !
Sydney Univ_ EE NNSO 1) Kakady i : + Analog 200W power coneuption
(Sydney, Austala)
NN3O 2) WATTLE 1.2y CMOS 10 34 CSA | Analog
Synepiics, inc. NNA2NNSD [1) 11000 Newral Eye Anelog <100mW
(San Joss, CA) .
NNTe 2) RBF Chip OITRD 2uCMO8 S0kHz Analog For Radial Basie Func.
Tohalou Univ. NN73 1) Neuran MOS Tranelstor | [| I | | ’ Double poly- l 1 I Logic design using I
(Sendel, Japan) {WI03) slicon CMOS Foatna-Gate PO
Toshibe NN24NNTS | 1) Synapes Chip 150,000 1.80E409 0.8u double | SOMNHz 578 Amart- | Anaslog Layered Newrel Not
(Tokyo, Japan) metal CMOS HopReld Two chip set
(newron & synapes chip
NN24NNTS | 2) Neuron Chip 11,000 0.8u dm CMOS 24 BP, Hebbian | Aneog work together)
Toycehl Univ. of Tech. NN8e - 4 Based on optoslectonic
(Toyoshi, Japan) Integrated circuit model

IW17B4

Section3of 5

Preliminary Survey of Neurally Inspired Chips and Boards

W

snn180Rk4

[Elwctronic Neural Network Chipe - C. clalty ‘e, under develop t, and/or imaginery (continued)
Company Refarence Chip Frst Technalogy Sponsor Number of | C Semi Clock | Numbaer of | Number of, Algor M; Pa Wiscelt
Number Sificon Source Trensistors | Updee/sec oc Techneology Spaed | Newwons | Waeighs | Supporied E Type |
feups) fcpe) j
[TRW NN29 in progress| 1.0u CMOS
(8an Diego. CA)
Univ. of Callornie & ICST [NN1S 1) SPERT inprogress| ONR & NSF 1.00E+08 1.00E+11 MOSIS CMOS | 50 MMz L2 - 4
. CA
Univ. of Deleware NN Anslog VLS! newromorph
Newark, 06)
Univ. of Edrburgh NNTS 1) EPSRON 380E+08 1.5 CMOS 3800 Analog Puise steam newrdl
dinburgh,) dmep shats signafing
Univ. of Minnesola NNSS 2.0y CMOS [BEP Analog LSt protolype
KDuluth, MY
Undv. of Southern CalW, NNo3 1) Early Vision 1.80E+10 1.2y CMOS s Anslog Mutple newro-
KLos Angeles, CA) procesecr chip
NNSS 2) Video Molion Detsclor 8.32E+410 12u CMOS -3 75 Andog
Univ. of Teudaba NNS2 1) Putse Deneily Digital High Scelabifily
KT aukube, Japan) Moduleting (PDM) Chip !
Univ, of Watsrloo NNIS 0.0u BICMOS | i i | Mixed (
KWaterioo, ONT, CAN) AD
Univ. of Wi-Platevile NNST 1} Neural Network 1992 2.0y CMOS 17 15 Analog, Convrol applcations
P , Convoller
[Washington St. Univ. NNB7 1) PWTA Hopfield
[(Puliman WAY
togh NNZTNNI3 |1) MSPSE 1993 | Bec. Design, Inc. ARPA 0.8y CMOS 3IMHL Digitel To be used in RAH-88
l@m., MDY Analog Devices
IOpthetronlc Neural Network Chips - C cislly avaliable, under development, and/or Imaginary
Company Relerence Chip Fret Technology Sponsar Number of | C l Clock i Numbaer of ;| Numbaer off Algorithme M[Partrere tscelianecus i
Famber Siloon Source Transistors | Updeme/vec soc Techndlogy | Speed 1 Heurons | Weighs Typs | |
JRA - Universiy of CO 'NN32 1) Phoxretactve Ring ! ONR & i ! ! U Loka- ! !
{Boulder. COV Resonaio ! | AFOSR | i ! | | vowrs | | !
et NNSO 1) Optosieckronic Syswm : ‘ 1.00Ee12 i | Analog, Robotic vieion and |
(Pasadena, CA) I ! H paarn recognition
Misubishi Seciric corp. NNOSNN10 | 1) Oplicel Neural Chip 1088 Corrsl Resswch 1.00E+12 10 MMY » 1024 - 4 Analog Neuron density s
{Hyogo, Japan) NNSs Laboralory 2000/sq.0m
[Tol-Aviy Unly. NNTY Four quadrant matrix-
VTalaviy taraal vector multober

1017804

Section 4 of S

Preliminary survey of Neurally Inspired Chips and Boards

Neural Network Boards - C cially available, under development, and/or imaginary
Accursis Automalion NNST 1) Sparse MMD 1.40E+08 3IMHE 8,000 3,000
(Chatancoge, TN AAC NNP stwhonment
(Adapive Soluions, Inc. NN4 1) CNAPSAVME 18 20 MH2 18 Processcrs
{(Beaverion, OR) 1.39B0OPS
NNSS 2) CNAPS#C Board 1904 ARPA 2 84B0PS
AND America, Lid. NN3SNNS2 | 1) HNet Applicelions 84,000 ISA-Ons Yaneputer
{({Ont., Canade) Development System
NN3S 2) HNst Supsrcompuling 28 MHz 1SA Bus - 8 raneputers
Expansion Board
ATAT Bel Labe NNSO 1) ANNA Board Uses ANNA NN chip
(Hoimdel, Ny & DSP32C procsesar
Caiflornia Sai Solware NN28NN3S, | 1) Brainkiaker Accelerator 3.00E+08 20MM2 oe TMS 320C28 - $200¢
(Neveds Cly, CA) NNS2
Current Technology, Inc. {NNI7NNS4 | 1) MMXK-AT 85.00E+00 125MHz| 32788 AT Bus - 95000
(Durham, NM)
Intel NNIONNDD (1) INNTS 28 MMz 2,048 20,480 ISA Bus - $12,000
(Sente Clara, CA)
Micro Compuling Labd NN1S 1) GENES 8Y1 1.10E+08 1.728 288 Hoplleld
(Lausarne, Switzeriand)
Mosaic Industriss, Inc. NN3S 1) QED Board
|(Newark, CA)
Newr s Semiconductor NNDS 1) Virtual Support Board 1902 4 CNU 32328 chips
(rvine, CA) £7500
Newr odynamx NN2O NN44, | 1) NDX XPSO®) 150E+07 450E+07 80 MHZ BP/RABP $8.995
Bouder, COV Nuss
NNZB NN | 2) NOX XP250) T50E+08 2256407 | | 26 MHz t BP/RBP i i
Cucford Computer, Inc. NN42 1) IPAVM Mavix vector mutiplier
(Oxford, CN)
Toshiba Corp. NNT2 1) MULTINEURO 100,000 galse 150E+09 0.8 uCMOS 2.00E+08 MPLYQ BP 65 VLS! chip board
(Fuchu-shi, Japan) per 2 nodes Hopp, othere|
'Ward Systems Group NNZs 1) NeuroBoard S0 MHz BP/SOM ISA Bus - $1500-2000
(Fredarick, MD) |
Biological Sy - In producth
Mother Nakre NI ANAE | 9) 41 - e ! f I { I I >t o0gas | I-100mz| 1008010 | 1.00Eata ; ‘
Wao (nAdyerssesan | i : i i ; ! [| vookwe| : o

Sesttis Offce

101804

Section 5ot §

Beference List: Artificial Neural Network Chips & Boards

Ret. Num. [Article Title Reference TRisOrganization | Author
NNo1 [Rectanguiar Aray of Digital Processors for Planning Pathe JPL New Tech Report # NPO-18727 ‘1 Ewino T.L.
NO2 (Cascaded V/LSi Chipe Halp Neural Network To Loam JPL New 1ach Raport # NPO-18645 Ewing T.L
NO3 INon-Volatile Army of Synapess for Neural Network JPL New Tach Report # NPO-18578 Ewing, T.L
No4 [The PRAM An Adaptive VLS| Chip IEEE Transactions on Neural Networks (Clarkeon, T.G
Nos Optical Leamning N hip wkh | { Analog M y Apphed Optics Nitte, Y
NO& A 16-Channe! CMOS Neura! Stmulating Army IEEE Journal d Sokd-Stase Circuits Tanghe, SJ
A Programmable Analog VLSI NN Py for C ication R IEEE T ctions on Neural Networks |Choi, J
Noa A Redreshable Analog VLSI NN Chip with 400 Neurone @ nd 40K Synapees | IEEE Journal d Sokd-State Circuits Arma, Y,
NOo A High-Speed Digital NN Chip wkh Low-Power Chain-Reaction Architecture | IEEE Journal d Sokid-State Circuits Uchimura, K
Meico's Neura! Chip; Holography Ressarch IEEE Micr Kahaner, D.K
[Application of the ANNA NN Chip to High-Speed Character Recognition IEEE Transactions on Neural Networks | Saciinger, E
[The TINMANN VLS| Chip IEEE Transactons on Neural Networka |Mshon, M S
The MOO 2 Neurocomputer System Design IEEE Transactions on Neural Networks |Mumiord, M L
An Analog CMOS Chip Set for NNs with Arbitrary Topologies IEEE Transactions on Neural Networks |Lansner, J A.
A Generic Systolic Amay Building Block for NNe with On-Chip Learning IEEE Transactions on Neural Networks |Lehmannn, C
The Design ol « Neuro-Microproceeot IEEE Transactions on Neural Netwoda | Wawrzynek, J
A Single 1.5V Digital Chip for « 1046 Synapse Neural Network IEEE Transactions on Neural Natworks |Watanabe. T.
Echelon: Networking Control IEE Roview Heath, S
Neural Network System o Stimuate Human Brain @ nd Eye Delenss Electronics K, LA
N20 Darpa Gets Neural Chip fromintel Electronic Enginaaning Timee Johinson, RC.
Bismens Fiekis Big, Faet Neural IC Electronic Enginaering Times Johnson, RC
N22 [Adaptive Adapts its CNAPS Chip Electronic Enginsaring Times Wirbe!, L
N23 Ricoh Announces Neural Microchip Electronic Enginesring Times Yoshida, J
Neural IC Besled Up ElctronEnginesring Twnes
SD Stacking Used to Build Neural Network Elocvom Engmonng Times Wirbel, L
N26 Neursl Chips Pour 10DN ‘cups’ g Times Johnson, RC
Neural Microchips Go Commercial Electronic Engmunng 1 wmes Johnson, RC
Neg Working with Neural Networks IEEE Spectrum Hammerstrom, D
N2o Raythaon Dealing for TRW's IC Business Etectronic Enginsering Tumes Gold, M
N3o Hitachi Neural Prototype Thinks, Leams Quickly Reinhardt, A
Fujitsu Plays Cops ‘N Robbers & Apprehend Expert Al Electronic Enginesring T imes Johnson, RC
GD Claime Neural Chii Breakthrough Miltary & Asroepace Electronics Adams, C.
N33 Westingh Readies Nouvnl Network Computer Mikary & Asrospace Electronics Keler, J
TINMANN The | 9 Artificial Neural N rk Comp Sck Lab Y van den Bout. D.E
N35 Electronic Neural Network Chips (Apphed Optice Jacke!, L D
Nas Neura! Network Resource Guide Al Expent Shaw, J.
Introducing the MM32K-AT Current Technology. Inc Curtent Tech
N38 MD1220 - Neural Bit Sice Micro Devioss Internal DL
< Neural Network Solutions Intel Intel
N4D BO170NX - ETANN hdd Intel
PCe Get Newral-Net Training Eloctronic Enginsering 1 - Woolnough. R
Are Antificial Neural Networks Finally Ready for Market? Electronice Manusl, T.
Neural Nets Carve o Nichain Miitary Systems Miltary & Asrospace Electronice Keker, J
Hardware Accelerator Card for NeuralNet Training PC Al
In Britain, Neural Nero o re Bureting Out Al Over Electronic Engineering 1 imes Johneon, R C
N46 Comp\nm that Loam by Doing Fortune Byknsky, G
A Neurop for Ases! JPL, CaM Institute of Technology Daud, T.
The Retina An Appvowhnbh P..n d the Brun BeknapMHarvard Univ. Press Dowhkng. J E
N o |d Network o N BelknapMarvard Univ. Press Dowhkng, J E
NSO Fast Feature-Recognizing Opiooloctromc System NASA TechBriets Thakoor, S
Sparse MIMD Neural Network Processor Accurate Automation Corp. MC
Naural Networks PC Al
N53 Advanced Methods in Neural Computing Von Nostrand Reinhold Wasserman, P.D
NS4 A Massively-Paralie! SIMD P for Neural N rk/Machine Vision Current Technology, Inc Glover, MA
N5S ARPA Awards $2 Million for Maseively-Paralel PC Miltary & Asroepace Electronics Rayner, S
N56 Product Showcase: Accelerate Your Train Al Expent
On the Design of a Neura! Network Chip for Control Applications Proceedings - IEEE Inter Symp CA&S |Narathong
NS8 Modular Anslog CMOS LS| for Feedirwd NN withOn-Chip BEP Leaming Procesdings « [EEE linter. Svmo CAS [yWang Y
NSO Low Powsr Trainable Analog Neural Netwrok Classiber Chip Procoodingn IEEE CIC Conterence Leong. P.
N6o Neural Acosk for Parallelzstion d Back-Propagation Algorith g ® nd M F ranzi, E
Archwtecture @ nd VLS| Design of a VLS| Neural Signal Processor Prooudmgn - IEEE Inlof s/mp C&S Ramacher, u
Ne2 PDM Digital Neural Network Ssytem El he) Hirai, Y.
N63 VLS| Newoproceasof fof Image Restoration Journal d VLS| Signal Proeumg Lee, J-C
N64 Optoslectronic Adaptive Devios and lts Leaming Perormance Electronice & Ci n Japan (K. i, K
NéS GeneratPurpose Signal P r Archi for N putng Journal of VLS| Signal Procsssing Ramacher, U
N66 Optical Neuro-Devices (Optostect onics - Devices8 Tech. Kyuma, K
Design of ¢ General-Puposs Neura! Signal Processor Neurocomputing Beichter, J
N6B VLS! Neuroprocessors for Video Motion Detection IEEE Transactions on Neural Networks (Lot, J-C
N6 NeuraiNets o m Starting 10 Makes Sense Biosensors & Bioslectronics McDonald, JA.
Analog Neurochip @ nd ite Apph 60 Mukitsyered Artificial NN Fujitsu Sceentific and Tech Journal Masumoto, D.
Four-quadram Optical Matrix Ve-tor MuRiphication Machine s ¢« NNP |Proceedinge of SPIE Abrameon, S
Programmabile Paralkie! Digital Neurocomputer IECET ctions on Elect Shimok Y.
Neuron MOS Binary-Logic integrated Circuits - Part | IEEE Transactions on Electron Devices |Shbata, T,
3.0 Water Stack Neurocomputing IEEE inte: Conf on Waler Scale int. Campbell, M L
Neuro Chips wkh Om-Chip BP tier Hebbian Leaming IEEE Journal d Solid-State Circuits Takeshi, S
An Anslog VLS! Chip for Radial Basis Functions ANIPS 5 Platt, J.C
Object Based Analog VLS| Vision Circuits ANIPS s Koch, C
Generic Analog Neural Computation - The EPSILON Chip ANIPS s Churchet, S
A Leaming Analog NN Chip wih Continuous-Time Recurrent Dynamics ANIPS 6 Cauwenberghs, G
N80 WATTLE: A Trainable Gain Analogus VLS| Neural Network ANIPS 6 Coggins. R
Digital Boh. VLSI foir Constraint Satifaction and Learning ANIPS 6 Psterson, A M
intel and Nestor o Commercialize Neural-Net Chip BYTE Bara, N
N83 Special Chips « m 8 the Core of World's Fastesi Neuro-Computer Electronice Gosch,J
Ne4 High-Spead Path Planning JPL Kemany, S.
Nes An Improved Programmable NN and /LS| Architecture Using BICMOS Procesdings - 1594 Int NN Society AM | Zhang, D.
Nes Analog VLS| Newomorph with Spatialy Extensive Dendritic Tree Procssdigs - 1984 Int \n Society AM | Ekas, J G
vLsl |nplomonlaluon of « Pules-Coded Winner-Take-AR Network Proosedngs -1024 Int NN Society AM | Meador, J L
Ne8 Optical | ion d « Seli-Organinng Featurs E ANIPS 4 Anderson, D.2
Neo A Nwroconwur Bored Based on the ANNA Neura! Network Chip ANIPS 4 Saclkinger, E
NOO A Contrast Sensitve Siicon Retina with RocpnmcnlSynapcca ANIPS 4 Boahen, KA
CCD Neural Network P rocessors for Patiem R ANIPS 4 o —_ __ _ _IChiang. AM

Jul-89
Dec-87
Feb-03

Fob-04

Mar-23
Aug-92
Aug-88
Fab-04
Dec-93
Nov-@2
Sep-03

19s7
1002
Nov-90
1903
vay-94
1993

Fob-04
Juk03
1043
1293
1068
Sep-93
1003
Feb-02
Apr93
Nov-¢2
Jun-93
Mar-93
Fob-03
Mar03
Sep-92
Fal 93
1003
Ju-93
Mar-23
1093
Dec-83
1068
19003
1003
1004
1294
1004
Mar-94
Jan-93
1204
Jurl-94
Jun-94
Jun-M
1293
1002
1292
1

Seattie Ofixce

